Funct. Mater. 2021; 28 (4): 713-719

doi:https://doi.org/10.15407/fm28.04.713

Influence of modification of surgical sutures with film coatings based on chitosan, polyvinyl alcohol and Na-carboxymethylcellulose dialdehyde on their capillary and physico-mechanical properties

S.V.Kryvets, G.I.Kovtun, A.G.Misyura

Institute of Applied Problems of Physics and Biophysics, National Academy of Sciences of Ukraine, 3 Vasilya Stepanchenka Str., 03142 Kyiv, Ukraine

Abstract: 

The study of capillarity for polycaproamide braided sutures of metric sizes No. 4 and No. 5 before and after modification by coating based on chitosan, polyvinyl alcohol and Na-carboxymethylcellulose dialdehyde was carried out. It was found that the capillarity of the original braided polycaproamide sutures increases with increasing their metric size. The capillarity of the polycaproamide sutures decreases by 6-10 times after applying the modifying coating. The maximum decrease in the capillarity is achieved by additional modification of the coating with a solution of sodium dodecyl sulfate, which leads to a maximum increase in the contact angle. The influence of the coating on the physical and mechanical properties of the original and modified polycaproamide sutures has been established. It is shown that the applied coating leads to a decrease in the tensile strength and an increase in the relative elongation at break of polycaproamide sutures. The obtained values for sutures of metric size No. 5 are within the allowable requirements of the USP. The results of the study can be used to create surgical suture material with improved performance characteristics and a lower probability of developing implant-associated complications when used in the field of reconstructive plastic and abdominal surgery.

Keywords: 
surgical suture, capillarity, polycaproamide, chitosan, dialdehyde Na-carboxymethylcellulose.
References: 
1. N.van Leeuwen, J.B.Trimbos, Gynecol. Surg., 9, 433 (2012).
https://doi.org/10.1007/s10397-012-0753-5
 
2. O.A.Molokova, A.I.Kecherukov, F.Sh.Aliev et al., Bull. Exp. Biol. Med., 143, 767 (2007).
https://doi.org/10.1007/s10517-007-0236-2
 
3. D.Geiger, E.-S.Debus, U.E.Ziegler et al., Surg. Infect., 6, 377 (2005).
https://doi.org/10.1089/sur.2005.6.377
 
4. V.A.Zhukovskii, Fibre Chem., 40, 208 (2008).
https://doi.org/10.1007/s10692-008-9039-0
 
5. G.M.Semenov, V.L.Petrishin, M.V.Kovshova, Surgical Suture, Piter, St.P. (2008) [in Russian].
 
6. V.E.Rykalina, S.I.Shkurenko, E.V.Monakhova et al., Fibre Chem., 43, 68 (2011).
https://doi.org/10.1007/s10692-011-9309-0
 
7. X.Chen, D.Hou, X.Tang et al., J. Mech. Behav. Biomed. Mater., 50, 160 (2015).
https://doi.org/10.1016/j.jmbbm.2015.06.013
 
8. G.Zhang, J.Hu, T.Ren, P.Zhu, Polymers, 12, 1630 (2020).
https://doi.org/10.3390/polym12081630
 
9. A.Obermeier, J.Schneider, S.Wehner et al., PLOS ONE, 9, e101426 (2014).
https://doi.org/10.1371/journal.pone.0101426
 
10. Sh.Mohebbi, M.N.Nezhad, P.Zarrintaj et al., Curr. Stem. Cell. Res. Ther., 14, 93 (2019).
https://doi.org/10.2174/1574888X13666180912142028
 
11. B.R.Rizeq, N.N.Younes, K.Rasool, G.K.Nasrallah, Int. J. Mol. Sci., 20, 5776 (2019).
https://doi.org/10.3390/ijms20225776
 
12. J.E.S.A.Menezes, H.S.dosSantos, M.K.A.Ferreira, J. Mol. Struct., 1199, 126968 (2020).
https://doi.org/10.1016/j.molstruc.2019.126968
 
13. K.Erol, M.Bolat, D.Tatar et al., J. Mol. Struct., 1200, 127060 (2020).
https://doi.org/10.1016/j.molstruc.2019.127060
 
14. F.Ullah, F.Javed, M.H.A.Kudus et al., Biointerface Res. Appl. Chem., 9, 4452 (2019).
https://doi.org/10.33263/BRIAC96.452457
 
15. P.Negi, G.Sharma, C.Verma et al., Carbohyd. Polym., 230, Art. No. 115659 (2020).
https://doi.org/10.1016/j.carbpol.2019.115659
 
16. O.L.Shanmugasundaram, J. Text. Appar. Technol. Manag., 5, 1 (2006).
 
17. V.Crescenzi, A.Francescangeli, A.Taglienti et al., Biomacromolecules, 4, 1045 (2003).
https://doi.org/10.1021/bm0340669
 
18. M.Changdao, G.Jimin, L.Xinying et al., Food. Hydrocoll., 27, 22 (2012).
https://doi.org/10.1016/j.foodhyd.2011.09.005
 
19. L.Munster, J.Vicha, J.Klofac et al., Carbohyd. Polym., 198, 181 (2018).
https://doi.org/10.1016/j.carbpol.2018.06.035
 
20. X.Jiang, Z.Yang, Y.Peng et al., Carbohyd. Polym., 137, 632 (2016).
https://doi.org/10.1016/j.carbpol.2015.10.078
 
21. T.G.Asere, S.Mincke, K.Folens et al., React. Funct. Polym., 141, 145 (2019).
https://doi.org/10.1016/j.reactfunctpolym.2019.05.008
 
22. M.B.Fedorov, G.A.Vikhoreva, N.R.Kil'deeva et al., Fibre Chem., 38, 475 (2006).
https://doi.org/10.1007/s10692-006-0113-1
 
23. V.A.Volkov, A.A.Ageev, Sci. Eur., 6, 15 (2016).
 
24. V.A.Volkov, A.A.Ageev, T.M.Kuzmina, Des. Technol., 48, 41 (2015).
 
25. V.A.Volkov, B.V.Bulushev, A.A.Ageev, Colloid J., 65, 523 (2003).
https://doi.org/10.1023/A:1025141523629
 
26. M.Rinaudo, N.R.Kil'deeva, V.G.Babak, Zh. Obshch.Khimii, 78, 2239 (2008).
https://doi.org/10.1134/S1070363208110455
 
27. L.B.Petrovic, J.R.Milinkovic, J.L.Fraj et al., J. Serb. Chem. Soc., 81, 1 (2016).
https://doi.org/10.2298/JSC151119024P
 
28. R.Barreiro-Iglesias, C.Alvarez-Lorenzo, A.Concheiro, J. Therm. Anal. Calorim., 82, 499 (2005).
https://doi.org/10.1007/s10973-005-0923-z
 

Current number: