Funct. Mater. 2021; 28 (4): 720-728

doi:https://doi.org/10.15407/fm28.04.720

Corrosion resistance of reinforced concrete based on different cementitious materials

Tao Sun1,2

1School of Architectural Technology, Jiangsu Jianzhu Institute, Xuzhou, 221116 Jiangsu, China
2School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou, 221116 Jiangsu, China

Abstract: 

Research on the corrosion of steel rods in concrete structures has been carried out. Four types of samples were studied: reinforced concrete; with epoxy resin coatings; and with conventional Portland cement and magnesium cement as binders. Corrosion resistance was studied by electrochemical method, resistance method, internal rapid corrosion test and field tests. The results show that the addition of mineral additives such as mineral powder, fly ash and silica fume to Portland cement can improve the complex performance of marine concrete, and the composite additive has a better effect on increasing the resistance of concrete to chloride ion corrosion than a single additive.

Keywords: 
cementitious materials, reinforced concrete, chloride ion diffusion coefficient, durability, corrosion resistance.
References: 

1. Yongmin, Yang, Tongsheng et al., J. Therm. Anal. Calorimetry, 139, 1903 (2020).

2. L.Hou, B.Zhou, S.Guo et al., Constr. Build. Mater., 198, 278 (2019).

3. Chuhongqiang, PAN, Congling et al., J. Wuhan Univer. Technol.-Mater. Sci.), 34, 129 (2019).

4. H.Chu, C.Pan, C.Xiong et al., J. Wuhan Univer. Technol.-Mater. Sci. Ed., 34, 1127 (2019).

5. A.Afshar, S.Jahandari, H.Rasekh et al., Constr. Build. Mater., 262, 120034 (2020).

6. A.M.Atta, N.Ali, M.H.Taman, Composites, Part B Engin., 166, 341 (2019).

7. M.Daniyal, S.Akhtar, A.Azam et al., Arabian J. Sci. Engin., 45, 4369 (2020).

8. Y.Yan, H.Liang, Y.Lu et al., Constr. Build. Mater., 269, 121283 (2020).

9. F.Almeida, A.Sales, J.P.Moretti et al., Constr. Build. Mater., 226, 72 (2019).

10. H.Fakhri, K.A.Ragalwar, R.Ranade, Constr. Build. Mater., 224, 850 (2019).

11. W.Zheng, M.Zou, Y.Wang, J. Build. Struct., 40, 28 (2019).

12. P.Ghoddousi, M.Haghtalab, A.Javid, Cement Concrete Compos., 121, 104077 (2021).

13. R.Dineshkumar, P.Balamurugan, Innovative Infrastruct. Solut., 6, 1 (2021).

14. V.Kumar, D.R.Prasad, Adv. Concrete Constr., 7, 75 (2019).

15. Y.Xu, H.Zhang, Y.Gan et al., Additive Manufacturing, 39, 101887 (2021).

16. S.Permeh, K.Lau, M.Duncan et al., Mater. Struct., 54, 143 (2021).

17. H.Lin, Y.Li, Y.Li, Constr. Build. Mater., 197, 228 (2019).

18. X.Hao, X.Zhao, B.Huang et al., J. Mater. Engin. Performance, 29, 4446 (2020).

19. B.Xya, W.Xuan, C.Yang et al., J. Mater. Res. Technol., 9. 12378 (2020).

20. Fengjiao Jiang, Gongzhi Yu, Ce Liang et al., Functional Materials, 28, 114 (2021).

21. M.Gawda, P.Jelen, M.Bik et al., Appl. Surf. Sci., 543, 148871 (2020).

22. H.Tamai, Y.Sonoda, J.E.Bolander, Constr. Build. Mater., 263, 120638 (2020).

23. Q.S.Banyhussan, G.Yildirim, Q.Anil et al., Struct. Concrete, 20, 1036 (2019).

24. F.Jiang, G.Jiang, W.Song et al., Functional Materials, 27, 730 (2020).

Current number: