Funct. Mater. 2021; 28 (4): 729-736
Photocatalytic antibacterial performance of diatomite/nano-TiO2 composite doped cement-based material
Department of Traffic and Municipal Engineering, Sichuan College of Architectural Technology, 610399 Sichuan Chengdu, China
A diatomite/nano-TiO2 (DNTC) composite was synthesized by a modified sol-gel method. The DNTCs were then added to a cement matrix to form cement-based photocatalytic materials (PCMs). The photocatalytic antibacterial ability of PCM was assessed by the degradation of Escherichia coli. It was shown that the photocatalytic activity of DNTC decreases with calcination temperature, and DNTC treated at 200°C exhibits high photocatalytic activity. The effect of PCM on the degradation of Escherichia coli increased with of DNTC, and the maximum degradation could reach 92.8 % when the DNTC mass fraction was 40 %. It has been found that DNTC can not only improve the dispersion of TiO2, but also increase the concentration of Escherichia coli around the PCM, resulting in a synergistic e ffect of improving the photocatalytic an tibacterial ability of the PCM.
1. I.Zucker, Y.Lester, J.Alter et al., Environ. Chem. Lett., 19, 1779 (2021). https://doi.org/10.1007/s10311-020-01160-0 |
||||
2. D.Towle, V.Baker, C.Schramm, M.O'Brien et al., Pediatr. Pulm., 53, 599 (2018). https://doi.org/10.1002/ppul.23990 |
||||
3. T.L.Chen, Y.H.Chen, Y.L.Zhao, P.C.Chiang, Aerosol Air Qual. Res., 20, 2289 (2020). https://doi.org/10.4209/aaqr.2020.06.0330 |
||||
4. Q.X.Zhong, A.Carratala, S.Nazarov et al., Environ. Sci. Tech., 50, 13520 (2016). https://doi.org/10.1021/acs.est.6b04170 |
||||
5. A.Fujishima, K.Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0 |
||||
6. Q.Guo, C.Zhou, Z.Ma, X.Yang, Adv. Mater., 31, 1901 (2019). https://doi.org/10.1002/adma.201901997 |
||||
7. A.Fujishima, X.Zhang, D.A.Tryk, Surf. Sci. Rep., 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001 |
||||
8. T.Matsunaga, R.Tomoda, T.Nakajima, H.Wake, Fems. Microbiol. Lett., 29, 211 (1985). https://doi.org/10.1111/j.1574-6968.1985.tb00864.x |
||||
9. H.N.Pantaroto, A.P.Ricomini, M.M.Bertolini et al., Dent. Mater., 34, 182 (2018). https://doi.org/10.1016/j.dental.2018.03.011 |
||||
10. H.M.Yadav, J.S.Kim, S.H.Pawar, Korean J. Chem. Eng., 33, 1989 (2016). https://doi.org/10.1007/s11814-016-0118-2 |
||||
11. S.Senthilkumar, M.Ashok, L.Kashinath et al., Smart. Sci., 6, 1 (2018). https://doi.org/10.1080/23080477.2017.1410012 |
||||
12. Z.H.Jing, X.E.Liu, Y.Du et al., Front. Mate. Sci., 14, 1 (2020). https://doi.org/10.1007/s11706-020-0491-y |
||||
13. T.Sato, M.Taya, Biochem. Eng. J., 30, 199 (2006). https://doi.org/10.1016/j.bej.2006.04.002 |
||||
14. W.C.Oh, A.R.Jung, W.B.Ko, Mater. Sci. Eng. C-Bio. Supram. System, 29, 1338 (2009). https://doi.org/10.1016/j.msec.2008.10.034 |
||||
15. K.J.Hsien, W.T.Tsai, T.Y.Su, J. Sol-Gel Sci. Technol., 51, 63 (2009). https://doi.org/10.1007/s10971-009-1921-6 |
||||
16. X.F.Liu, Y.G.He, B.B.Yang et al., Catalysts, 10 (2020). | ||||
17. I.Jansson, S.Suarez, F.J.Garcia-Garcia, B.Sanchez, Appl. Catal. B-Environ., 178, 100 (2015). https://doi.org/10.1016/j.apcatb.2014.10.022 |
||||
18. J.Tauc, R.Grigorovici, A.Vancu, Physica. Status Solidi (b), 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224 |
||||
19. J.H.Yan, H.Chen, L.Zhang, J.Z.Jiang, Chin. J. Chem., 29, 1133 (2011). https://doi.org/10.1002/cjoc.201190212 |
||||