Funct. Mater. 2021; 28 (4): 729-736

doi:https://doi.org/10.15407/fm28.04.729

Photocatalytic antibacterial performance of diatomite/nano-TiO2 composite doped cement-based material

Gang Liao, Yuming He

Department of Traffic and Municipal Engineering, Sichuan College of Architectural Technology, 610399 Sichuan Chengdu, China

Abstract: 

A diatomite/nano-TiO2 (DNTC) composite was synthesized by a modified sol-gel method. The DNTCs were then added to a cement matrix to form cement-based photocatalytic materials (PCMs). The photocatalytic antibacterial ability of PCM was assessed by the degradation of Escherichia coli. It was shown that the photocatalytic activity of DNTC decreases with calcination temperature, and DNTC treated at 200°C exhibits high photocatalytic activity. The effect of PCM on the degradation of Escherichia coli increased with of DNTC, and the maximum degradation could reach 92.8 % when the DNTC mass fraction was 40 %. It has been found that DNTC can not only improve the dispersion of TiO2, but also increase the concentration of Escherichia coli around the PCM, resulting in a synergistic e ffect of improving the photocatalytic an tibacterial ability of the PCM.

Keywords: 
photocatalytic sterilization, diatomite/nano-TiO<sub>2</sub> composite, photocatalytic cement-based material, photocatalytic activity.
References: 
1. I.Zucker, Y.Lester, J.Alter et al., Environ. Chem. Lett., 19, 1779 (2021).
https://doi.org/10.1007/s10311-020-01160-0
 
2. D.Towle, V.Baker, C.Schramm, M.O'Brien et al., Pediatr. Pulm., 53, 599 (2018).
https://doi.org/10.1002/ppul.23990
 
3. T.L.Chen, Y.H.Chen, Y.L.Zhao, P.C.Chiang, Aerosol Air Qual. Res., 20, 2289 (2020).
https://doi.org/10.4209/aaqr.2020.06.0330
 
4. Q.X.Zhong, A.Carratala, S.Nazarov et al., Environ. Sci. Tech., 50, 13520 (2016).
https://doi.org/10.1021/acs.est.6b04170
 
5. A.Fujishima, K.Honda, Nature, 238, 37 (1972).
https://doi.org/10.1038/238037a0
 
6. Q.Guo, C.Zhou, Z.Ma, X.Yang, Adv. Mater., 31, 1901 (2019).
https://doi.org/10.1002/adma.201901997
 
7. A.Fujishima, X.Zhang, D.A.Tryk, Surf. Sci. Rep., 63, 515 (2008).
https://doi.org/10.1016/j.surfrep.2008.10.001
 
8. T.Matsunaga, R.Tomoda, T.Nakajima, H.Wake, Fems. Microbiol. Lett., 29, 211 (1985).
https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
 
9. H.N.Pantaroto, A.P.Ricomini, M.M.Bertolini et al., Dent. Mater., 34, 182 (2018).
https://doi.org/10.1016/j.dental.2018.03.011
 
10. H.M.Yadav, J.S.Kim, S.H.Pawar, Korean J. Chem. Eng., 33, 1989 (2016).
https://doi.org/10.1007/s11814-016-0118-2
 
11. S.Senthilkumar, M.Ashok, L.Kashinath et al., Smart. Sci., 6, 1 (2018).
https://doi.org/10.1080/23080477.2017.1410012
 
12. Z.H.Jing, X.E.Liu, Y.Du et al., Front. Mate. Sci., 14, 1 (2020).
https://doi.org/10.1007/s11706-020-0491-y
 
13. T.Sato, M.Taya, Biochem. Eng. J., 30, 199 (2006).
https://doi.org/10.1016/j.bej.2006.04.002
 
14. W.C.Oh, A.R.Jung, W.B.Ko, Mater. Sci. Eng. C-Bio. Supram. System, 29, 1338 (2009).
https://doi.org/10.1016/j.msec.2008.10.034
 
15. K.J.Hsien, W.T.Tsai, T.Y.Su, J. Sol-Gel Sci. Technol., 51, 63 (2009).
https://doi.org/10.1007/s10971-009-1921-6
 
16. X.F.Liu, Y.G.He, B.B.Yang et al., Catalysts, 10 (2020).
 
17. I.Jansson, S.Suarez, F.J.Garcia-Garcia, B.Sanchez, Appl. Catal. B-Environ., 178, 100 (2015).
https://doi.org/10.1016/j.apcatb.2014.10.022
 
18. J.Tauc, R.Grigorovici, A.Vancu, Physica. Status Solidi (b), 15, 627 (1966).
https://doi.org/10.1002/pssb.19660150224
 
19. J.H.Yan, H.Chen, L.Zhang, J.Z.Jiang, Chin. J. Chem., 29, 1133 (2011).
https://doi.org/10.1002/cjoc.201190212
 

Current number: