Funct. Mater. 2021; 28 (4): 751-757
The slow electromagnetic wave effect induced by the interaction of dark and quasi-dark modes in microwave metamaterials
O.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Ac. Proskura Str., 61085 Kharkiv, Ukraine
The work is devoted to the development and numerical simulation of a planar microwave metamaterial demonstrating the effect of two-mode plasmon-induced transparency (PIT effect) in the transmission spectra when a plane electromagnetic wave is incident on the surface of the metamaterial at the frequency of the fundamental surface lattice mode. The resonance responses of the metamaterial and the action of slow electromagnetic waves in the microwave frequency range of 50-60 GHz are investigated. It has been shown by the method of numerical simulation that windows of two-mode transparency in the fundamental surface lattice modes can appear for a given topology and geometric parameters of the metamaterial structure. The correlation between the structural parameters of the unit cell of the metamaterial, the spectral transmission coefficients and the group delay time of the incident electromagnetic waves has been determined. The developed computer model of a planar metamaterial demonstrated large values of the group refractive index, the delay time of the group velocity of electromagnetic excitation and the product of the bandwidth and the delay time.
1. M.Fleischhauer, A.Imamoglu, J.Marangos, Rev. Modern Phys., 772, 633 (2005). https://doi.org/10.1103/RevModPhys.77.633 |
||||
2. H.Li, V.A.Sautenkov, Y.V.Rostovtsev et al., Phys. Rev. A, 80, 023820(9) (2009). | ||||
3. D.Wu, Y.Liu, L.Yu et al., Scien. Report,, 7, 45210(10) (2017). | ||||
4. C.Liu, Z.Dutton, C.Behroozi, L.V.Hau, Nature, 409, 490 (2001). https://doi.org/10.1038/35054017 |
||||
5. T.F.Krauss, Nature Photon., 2, 448 (2008). https://doi.org/10.1038/nphoton.2008.139 |
||||
6. S.Yang, X.Xia, Z.Liu et al., J.Phys.: Condens. Matter., 28, 445002(8) (2016). https://doi.org/10.1088/0953-8984/28/44/445002 |
||||
7. S.Zhang, D.A.Genov, Y.Wang et al., Phys. Rev. Lett., 101, 047401(4) (2008). https://doi.org/10.1103/PhysRevLett.101.047401 |
||||
8. R.Taubert, M.Hentschel, J.Kastel, H.Giessen, Nano Lett., 12, 1367 (2012). https://doi.org/10.1021/nl2039748 |
||||
9. Z.Dong, H.Liu, J.Cao et al., Appl.Phys. Lett., 97, 114101(3) (2010). https://doi.org/10.1063/1.3488020 |
||||
10. T.C.Tan, Y.K.Srivastava, M.Manjappa et al., Appl. Phys. Lett., 112, 201111(5) (2018). https://doi.org/10.1063/1.5026649 |
||||
11. H.Li, S.Liu, S.Liu et al., Appl.Phys. Lett., 106, 114101(4) (2015). https://doi.org/10.1063/1.4915313 |
||||
12. M.Manjappa, S.Chiam, L.Cong et al., Appl. Phys. Lett., 106, 181101(5) (2015). https://doi.org/10.1063/1.4919531 |
||||
13. L.Qin, K.Zhang, R.Peng et al., Physical Review B, 87, 125136(6) (2013). https://doi.org/10.1103/PhysRevB.87.125136 |
||||
14. M.Manjappa, Y.K.Srivastava, R.Singh, Phys. Rev. B, 94, 161103(6) (2016). https://doi.org/10.1103/PhysRevB.94.161103 |
||||
15. N.Xu, R.Singh, W.Zhang, Appl.Phys. Lett., 109, 021108(5) (2016). https://doi.org/10.1063/1.4958730 |
||||
16. V.G.Kravets, A.V.Kabashin, W.L.Barnes, A.N.Grigorenko, Chem.Rev., 118, 5912 (2018). https://doi.org/10.1021/acs.chemrev.8b00243 |
||||
17. A.Bitzer, J.Wallauer, H.Merbold et al., Opt. Express, 17, 22108 (2009). https://doi.org/10.1364/OE.17.022108 |
||||
18. CST MICROWAVE STUDIO - 3D electromagnetic simulation software - Third-Party Products & Services - MATLAB & Simulink (mathworks.com) | ||||
19. S.Murai, G.W.Castellanos, T.V.Raziman et al., Adv. Opt. Mater., 8, 1902024(8) (2020). https://doi.org/10.1002/adom.201902024 |
||||
20. S.Chiam, R.Singh, C.Rockstuhl et al., Phys. Rev. B, 80, 153103(4) (2009). https://doi.org/10.1103/PhysRevB.80.153103 |
||||
21. F.Bagci, B.Akaoglu, J. Appl. Phys., 123, 173101(9) (2018). https://doi.org/10.1063/1.5023684 |
||||
22. J.Tidstrom, P.Janes, L.M.Andersson, Phys. Rev. A, 75, 053803(11) (2007). | ||||
23. H.Li, S.Liu, S.Wang et al., Appl.Phys. Lett., 106, 114101(4) (2015). https://doi.org/10.1063/1.4915313 |
||||
24. X.Yin, T.Feng, S.Yip et al., Appl. Phys.Lett., 103, 021115(5) (2013). https://doi.org/10.1063/1.4813553 |