Funct. Mater. 2021; 28 (4): 751-757

doi:https://doi.org/10.15407/fm28.04.751

The slow electromagnetic wave effect induced by the interaction of dark and quasi-dark modes in microwave metamaterials

Yu.N.Savin, Z.E.Eremenko, O.A.Breslavets

O.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Ac. Proskura Str., 61085 Kharkiv, Ukraine

Abstract: 

The work is devoted to the development and numerical simulation of a planar microwave metamaterial demonstrating the effect of two-mode plasmon-induced transparency (PIT effect) in the transmission spectra when a plane electromagnetic wave is incident on the surface of the metamaterial at the frequency of the fundamental surface lattice mode. The resonance responses of the metamaterial and the action of slow electromagnetic waves in the microwave frequency range of 50-60 GHz are investigated. It has been shown by the method of numerical simulation that windows of two-mode transparency in the fundamental surface lattice modes can appear for a given topology and geometric parameters of the metamaterial structure. The correlation between the structural parameters of the unit cell of the metamaterial, the spectral transmission coefficients and the group delay time of the incident electromagnetic waves has been determined. The developed computer model of a planar metamaterial demonstrated large values of the group refractive index, the delay time of the group velocity of electromagnetic excitation and the product of the bandwidth and the delay time.

Keywords: 
metamaterial, unit cell, plasmon induced transparency effect, "bright" modes, "dark" modes, surface lattice resonance modes, transparency windows, DBP.
References: 
1. M.Fleischhauer, A.Imamoglu, J.Marangos, Rev. Modern Phys., 772, 633 (2005).
https://doi.org/10.1103/RevModPhys.77.633
 
2. H.Li, V.A.Sautenkov, Y.V.Rostovtsev et al., Phys. Rev. A, 80, 023820(9) (2009).
 
3. D.Wu, Y.Liu, L.Yu et al., Scien. Report,, 7, 45210(10) (2017).
 
4. C.Liu, Z.Dutton, C.Behroozi, L.V.Hau, Nature, 409, 490 (2001).
https://doi.org/10.1038/35054017
 
5. T.F.Krauss, Nature Photon., 2, 448 (2008).
https://doi.org/10.1038/nphoton.2008.139
 
6. S.Yang, X.Xia, Z.Liu et al., J.Phys.: Condens. Matter., 28, 445002(8) (2016).
https://doi.org/10.1088/0953-8984/28/44/445002
 
7. S.Zhang, D.A.Genov, Y.Wang et al., Phys. Rev. Lett., 101, 047401(4) (2008).
https://doi.org/10.1103/PhysRevLett.101.047401
 
8. R.Taubert, M.Hentschel, J.Kastel, H.Giessen, Nano Lett., 12, 1367 (2012).
https://doi.org/10.1021/nl2039748
 
9. Z.Dong, H.Liu, J.Cao et al., Appl.Phys. Lett., 97, 114101(3) (2010).
https://doi.org/10.1063/1.3488020
 
10. T.C.Tan, Y.K.Srivastava, M.Manjappa et al., Appl. Phys. Lett., 112, 201111(5) (2018).
https://doi.org/10.1063/1.5026649
 
11. H.Li, S.Liu, S.Liu et al., Appl.Phys. Lett., 106, 114101(4) (2015).
https://doi.org/10.1063/1.4915313
 
12. M.Manjappa, S.Chiam, L.Cong et al., Appl. Phys. Lett., 106, 181101(5) (2015).
https://doi.org/10.1063/1.4919531
 
13. L.Qin, K.Zhang, R.Peng et al., Physical Review B, 87, 125136(6) (2013).
https://doi.org/10.1103/PhysRevB.87.125136
 
14. M.Manjappa, Y.K.Srivastava, R.Singh, Phys. Rev. B, 94, 161103(6) (2016).
https://doi.org/10.1103/PhysRevB.94.161103
 
15. N.Xu, R.Singh, W.Zhang, Appl.Phys. Lett., 109, 021108(5) (2016).
https://doi.org/10.1063/1.4958730
 
16. V.G.Kravets, A.V.Kabashin, W.L.Barnes, A.N.Grigorenko, Chem.Rev., 118, 5912 (2018).
https://doi.org/10.1021/acs.chemrev.8b00243
 
17. A.Bitzer, J.Wallauer, H.Merbold et al., Opt. Express, 17, 22108 (2009).
https://doi.org/10.1364/OE.17.022108
 
18. CST MICROWAVE STUDIO - 3D electromagnetic simulation software - Third-Party Products & Services - MATLAB & Simulink (mathworks.com)
 
19. S.Murai, G.W.Castellanos, T.V.Raziman et al., Adv. Opt. Mater., 8, 1902024(8) (2020).
https://doi.org/10.1002/adom.201902024
 
20. S.Chiam, R.Singh, C.Rockstuhl et al., Phys. Rev. B, 80, 153103(4) (2009).
https://doi.org/10.1103/PhysRevB.80.153103
 
21. F.Bagci, B.Akaoglu, J. Appl. Phys., 123, 173101(9) (2018).
https://doi.org/10.1063/1.5023684
 
22. J.Tidstrom, P.Janes, L.M.Andersson, Phys. Rev. A, 75, 053803(11) (2007).
 
23. H.Li, S.Liu, S.Wang et al., Appl.Phys. Lett., 106, 114101(4) (2015).
https://doi.org/10.1063/1.4915313
 
24. X.Yin, T.Feng, S.Yip et al., Appl. Phys.Lett., 103, 021115(5) (2013).
https://doi.org/10.1063/1.4813553

Current number: