Funct. Mater. 2021; 28 (4): 764-772
Thermodynamic and experimental studies of the growth of magnesium-aluminum spinel crystals in molybdenum crucibles
Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine
The possibility of crystal growth of magnesium-aluminium spinel MgAl2O4 from a melt under protective reducing gaseous media in molybdenum crucibles has been investigated. Thermodynamic estimates of the influence of the oxidizing potential of the atmosphere in the crystallization chamber on the composition of the gas phase of MgAl2O4, the processes of mass transfer, and the interaction of the dissociated products of MgAl2O4 with the crucible material have been carried out. The optimal composition of the protective atmosphere (Ar + CO + H2) and the technological parameters of the crystal growth of MgAl2O4 has been determined. Crystals of magnesium-aluminium spinel with a slight deviation from stoichiometry along the length of the crystal (molar ratio of Al2O3 to MgO from 1 to 1.3) were obtained by the horizontal directed crystallization method. The element analysis has shown that under the developed conditions it was possible to avoid significant contamination of crystals by the crucible material (Mo ≤ 0.018 wt. %). The obtained results testify to the possibility of growing of MgAl2O4 crystals of optical quality without using expensive iridium crucibles.
1. K.V.Yumashev, I.A.Denisov, N.N.Posnov et al., J. Alloys and Comp., 341, 366 (2002). https://doi.org/10.1016/S0925-8388(02)00039-7 |
||||
2. I.Ganesh, Int. Materials Reviews, 58, 63 (2013). https://doi.org/10.1179/1743280412Y.0000000001 |
||||
3. C.C.Wang, J. Appl. Phys., 40, 3433 (1969). https://doi.org/10.1063/1.1658216 |
||||
4. G.I.Belykh, V.T.Gritsyna, L.A.Lytvynov et al., Functional Materials, 12, 447 (2005). | ||||
5. T.Sato, M.Shirai, K.Tanaka et al., J. Luminescence, 114, 155 (2005). https://doi.org/10.1016/j.jlumin.2004.12.016 |
||||
6. A.Tomita, T.Sato, K.Tanaka et al., J. Luminescence, 109, 19 (2004). https://doi.org/10.1016/j.jlumin.2003.12.049 |
||||
7. A.Jouini, H.Sato, A.Yoshikawa et al., J. Mater. Res., 21, 2337 (2006). https://doi.org/10.1557/jmr.2006.0280 |
||||
8. A.Jouini, H.Sato, A.Yoshikawa et al., J. Crystal Growth, 287, 313 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.027 |
||||
9. B.Cockayne, M.Chesswas, J. Mater. Scie., 2, 498 (1967). https://doi.org/10.1007/BF00562957 |
||||
10. C.Wyon, J.Aubert, F.Auzel, J. Cryst. Growth, 79, 710 (1986). https://doi.org/10.1016/0022-0248(86)90542-7 |
||||
11. E.Kasper, P.Korczak, H.Henkel, J. Mater. Scie., 9, 1696 (1974). https://doi.org/10.1007/BF00540768 |
||||
12. A.L.Bajor, M.Chmielewski, R.Diduszko et al., J. Cryst. Growth, 401, 844 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.001 |
||||
13. G.H.Sun, Q.L.Zhang, J.Q.Luo et al., Materials Chemistry and Physics, 204, 277 (2017). https://doi.org/10.1016/j.matchemphys.2017.10.049 |
||||
14. D.Viechnicki, F.Schmid, J.W.McCauley, Appl. Phys., 43, 4508 (1972). https://doi.org/10.1063/1.1660953 |
||||
15. T.Sasamoto, H.Hara, T.Sata, Bull. Chem. Soc. Japan, 54, 3327 (1981). https://doi.org/10.1246/bcsj.54.3327 |
||||
16. N.A.Gribchenkova, K.G.Smorchkova, A.G.Kolmakov et al., Inorg. Mater, 53, 514 (2017). https://doi.org/10.1134/S0020168517050077 |
||||
17. S.I.Shornikov, Rus. J. Phys Chem A, 91, 10 (2017). https://doi.org/10.1134/S0036024417010241 |
||||
18. S.I.Shornikov, Rus. J. Physical Chemistry A, 91, 287 (2017). https://doi.org/10.1134/S0036024417020303 |
||||
19. V.L.K.Lou, T.E.Mitchell, A.H.Heuer, J. Am. Ceram. Soc., 68, 49 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15264.x |
||||
20. Thermodynamic Properties of Individual Substances. Reference Edition: In: 4 vol. / L.V.Gurvich, I.V.Veitc, V.A.Medvedev et al., v.1, Book 2, Nauka, Moscow (1978) [in Russian]. | ||||
21. Thermodynamic Properties of Individual Substances. Reference Edition: In: 4 vol. / L.V.Gurvich, I.V.Veitc, V.A.Medvedev et al., v.3, Book 2, Nauka, Moscow (1981) [in Russian]. | ||||
22. I.S.Kulikov, Thermal Dissociation of Compounds, Metallurgy, Moscow (1969) [in Russian]. | ||||
23. A. Ya Danko, V.M.Puzikov, V.P.Seminozhenko et al., Termal Dissociation of Compounds, Moscow, Metallurgy. Technological foundations for growing leucosapphire under reducing conditions. Kharkov, ISMA (2009) | ||||
24. A.Ya.Danko, N.S.Sidelnikova, Functional Materials, 8, 271 (2001). | ||||
25. O.Knacke, I.N.Stranski, Progress in Metal Physics, 6, 181 (1956). https://doi.org/10.1016/0502-8205(56)90007-7 |
||||
26. A.M.Vasserman, L.L.Kunin, Y.N.Surovoj, Determination Gases in Metals, Nauka, Moscow (1976) [in Russian]. | ||||
27. R.Reed, J.Praushnitz, T.Sherwood, Properties of Gases and Liquids, Chemistry, Leningrad (1982) [in Russian]. | ||||
28. S.V.Nizhankovskiy, A.Ya.Dan'ko, E.V.Krivonosov et al., Inorg. Mat., 46, 35 (2010). https://doi.org/10.1134/S0020168510010085 |
||||
29. R.I.Sheldon, T.Hartmann, K.E.Sickafus, J. Am. Ceram. Soc., 82, 3293 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02242.x |
||||
30. S.T.Murphy, C.A.Gilbert, R.Smith, Philos. Mag., 90, 1297 (2010). https://doi.org/10.1080/14786430903341402 |