Funct. Mater. 2021; 28 (4): 773-783

doi:https://doi.org/10.15407/fm28.04.773

Supramolecular inclusion complexes of 2-hydroxypropyl-β-cyclodextrin with mefenamic acid: preparation and characterization

G.V.Grygorova1, V.K.Klochkov1, N.A.Kasian1, P.V.Mateychenko2, D.S.Sofronov3, S.L.Yefimova1

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

We report the synthesis and evaluation of inclusion complexes between mefenamic acid (MFA) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). The phase solubility studies reveal that MFA forms a complex with the HP-β-CD at a 1:1 molar ratio that was also confirmed by UV-vis spectral data (Job's plots). Characterizations of the prepared host-guest type solid complexes using a reliable spectroscopic and calorimetric methods indicate that MFA is found inside the cavity of the HP-β-CD. Obtained thermodynamic parameters for MFA/HP-β-CD complex formation show that MFA inclusion in HP-β-CD cavities is favorable, spontaneous exothermic and enthalpy-driven process. The stability constant Ks for MFA/HP-β-CD complexes determined from the Benesi-Hildebrand equation using fluorescence spectral data is adequate for the formation of an inclusion complex indicates that a fast MFA drug release from MFA/HP-β-CD complex should be expected. The presented results show the MFA/HP-β-CD complex as an effective new approach to design a novel formulation for pharmaceutical applications.

Keywords: 
2-hydroxypropyl-β-cyclodextrin, mefenamic acid, inclusion complexes, phase solubility, stability constant.
References: 
1. G.C.Seuanes, M.B.Moreira, T.Petta et al., J. Inorg. Biochem., 153, 178 (2015).
https://doi.org/10.1016/j.jinorgbio.2015.08.004
 
2. G.Ribeiro, M.Benadiba, A.Colquhoun, D.D.Silva, Polyhedron, 27, 1131 (2008).
https://doi.org/10.1016/j.poly.2007.12.011
 
3. S.Bindu, S.Mazumder, U.Bandyopadhyay, Biochem. Pharmacol., 180, 11447 (2020).
https://doi.org/10.1016/j.bcp.2020.114147
 
4. V.R.Cunha, C.M.Izumi, P.A.Petersen et al., J. Phys. Chem. B, 118, 4333 (2014).
https://doi.org/10.1021/jp500988k
 
5. D.K.Demertzi, D.H.Litina, M.Staninska et al., J. Enzyme Inhib. Med. Chem., 24, 742 (2009).
https://doi.org/10.1080/14756360802361589
 
6. A.D.S.Hernandez, H.R.G.Salazar, D.A.M.Galindo et al., Int. Urol. Nephrol., 44, 471 (2012).
https://doi.org/10.1007/s11255-011-0012-0
 
7. D.H.Woo, I.S.Han, G.Jung, Life Sci., 24, 2439 (2004).
https://doi.org/10.1016/j.lfs.2004.04.042
 
8. M.Asanuma, S.Nishibayashi-Asanuma, I.Miyazaki et al., J. Neurochem., 76, 1895 (2001).
https://doi.org/10.1046/j.1471-4159.2001.00205.x
 
9. O.Bekers, E.V, Uijtendaal, D.A.Beijnen et al., Drug Dev. Ind. Pharm., 17, 1503 (2008).
https://doi.org/10.3109/03639049109026630
 
10. K.Lobmann, H.Grohganz, R.Laitinen et al., Eur. J. Pharm, Biopharm., 85, 873 (2013).
https://doi.org/10.1016/j.ejpb.2013.03.014
 
11. G.L.Amidon, H.Lennernas, V.P.Shah, J.R.Crison, Pharm. Res., 12, 413 (1995).
https://doi.org/10.1023/A:1016212804288
 
12. M.N.Anjana, J.Joseph, S.C.Nair, Int. J. Pharm. Sci. Rev. Res., 20, 127 (2013).
 
13. A.R.Hedges, Chem. Rev., 98, 2035 (1998).
https://doi.org/10.1021/cr970014w
 
14. K.A.Connors, Chem. Rev., 9, 1325 (1997).
https://doi.org/10.1021/cr960371r
 
15. E.M.M.Del Valle, Process. Biochem., 39, 1088 (2004).
https://doi.org/10.1016/S0032-9592(03)00258-9
 
16. J.Szejtli, Chem. Rev., 98, 1743 (1998).
https://doi.org/10.1021/cr970022c
 
17. N.Qiu, X.B.Li, J.D.Liu, J. Incl. Phenom. Macrocycl. Chem., 89, 229 (2017).
https://doi.org/10.1007/s10847-017-0752-2
 
18. M.E.Brewster, T.Loftsson, Adv. Drug Deliv, Rev., 59, 645 (2007).
https://doi.org/10.1016/j.addr.2007.05.012
 
19. S.Gould, R.C.Scott, Food Chem. Toxicol., 43, 1451 (2005).
https://doi.org/10.1016/j.fct.2005.03.007
 
20. J.Szejtli, Pure Appl. Chem., 76, 1825 (2004).
https://doi.org/10.1351/pac200476101825
 
21. L.Liu, Q.Guo, J. Incl. Phenom. Macrocycl. Chem., 42, 1 (2002).
https://doi.org/10.1023/A:1014520830813
 
22. T.Yousef, N.Hassan, J. Incl. Phenom. Macrocycl. Chem., 87, 105 (2017).
https://doi.org/10.1007/s10847-016-0682-4
 
23. C.T.Chang, L.C.Chen, C.C.Chang et al., J. Clin. Pharm. Ther., 33, 495 (2008).
https://doi.org/10.1111/j.1365-2710.2008.00946.x
 
24. V.R.Sinha, Amita, R.Chadha et al., Cent. Eur, J, Chem., 8, 953 (2010).
https://doi.org/10.2478/s11532-010-0066-3
 
25. T.Higuchi, K.A.Connors, Phase Solubility Techniques, Interscience, New York (1965).
 
26. T.Loftsson, D.Hreinsdottir, M.Masson, J. Incl., Phenom. Macrocycl. Chem., 57, 545 (2007).
https://doi.org/10.1007/s10847-006-9247-2
 
27. P.Job, Ann. Chim., 9, 113 (1928).
 
28. J.S.Renny, L.L.Tomasevich, E.H.Tallmadge, D.B.Collum, Angew. Chem. Int. Ed., 52, 11998 (2013).
https://doi.org/10.1002/anie.201304157
 
29. H.Bouzit, M.Stiti, M.Abdaoui, J. Incl. Phenom. Macrocycl. Chem., 86, 121 (2016).
https://doi.org/10.1007/s10847-016-0647-7
 
30. W.Misiuk, M.Zalewska, J. Mol. Liq., 159, 220 (2011).
https://doi.org/10.1016/j.molliq.2011.01.014
 
31. J.V.Caso, L.Russo, M.Palmieri et al., Amino Acids, 47, 2215 (2015).
https://doi.org/10.1007/s00726-015-2003-4
 
32. H.A.Benesi, J.H.Hildebrand, J. Am. Chem. Soc., 89, 2703 (1949).
https://doi.org/10.1021/ja01176a030
 
33. S.Hamai, Bull. Chem. Soc. Jpn., 55, 2721 (1982).
https://doi.org/10.1246/bcsj.55.2721
 
34. U.Domanska, A.Pelczarska, A.Pobudkowska, Int. J. Mol. Sci., 12, 2383 (2011).
https://doi.org/10.3390/ijms12042383
 
35. D.Sid, M.Baitiche, Z.Elbahri et al., J. Enzyme Inhib. Med. Chem., 36, 605 (2021).
https://doi.org/10.1080/14756366.2020.1869225
 
36. R.Arun, K.C.K.Ashok, V.V.N.S.S.Sravanthi, Scientia Pharmaceutica, 76, 567 (2008).
https://doi.org/10.3797/scipharm.0808-05
 
37. R.Periasamy, S.Kothainayaki, K.Sivakumar, J. Mol. Struct., 1080, 69 (2015).
https://doi.org/10.1016/j.molstruc.2014.09.046
 
38. R.Rajamohan, S.Kothai Nayaki, M.Swaminathan, J. Mol. Liq., 220, 918 (2016).
https://doi.org/10.1016/j.molliq.2016.04.118
 
39. P.Padhan, A.Sethy, P.K.Behera, J. Photochem. Photobiol. A, 337, 165 (2017).
https://doi.org/10.1016/j.jphotochem.2017.01.015
 
40. A.M.Stalcup, S.S.Chang, D.W.Armstrong, J.Pitha, J. Chromatogr., 513, 181 (1990).
https://doi.org/10.1016/S0021-9673(01)89435-8
 
41. M.C.Chervenak, E.J.Toone, J. Am. Chem. Soc., 116, 10533 (1994).
https://doi.org/10.1021/ja00102a021
 
42. C.Alvariza, R.Usero, F.Mendicuti, Spectrochim. Acta A, 67, 420 (2007).
https://doi.org/10.1016/j.saa.2006.07.039
 
43. R.Singh, N.Bharti, J.Madan, S.N.Hiremath, J. Pharm. Sci. Technol., 2, 171 (2010).
 
44. L.Liu, S.Zhu, J. Pharm. Biomed. Anal., 40, 122 (2006).
https://doi.org/10.1016/j.jpba.2005.06.022
 
45. S.Siva, S.Kothai Nayaki, N.Rajendirana, Spectrochim. Acta Part A., 174, 349 (2017).
https://doi.org/10.1016/j.saa.2014.12.002
 
46. A.Celebioglu, T.Uyar, J. Agric. Food Chem., 65, 5404 (2017).
https://doi.org/10.1021/acs.jafc.7b01562
 
47. N.Qiu, X.Zhao, Q.Liu et al., J. Mol. Liq., 289, 111151 (2019).
https://doi.org/10.1016/j.molliq.2019.111151
 
48. S.Romero, B.Escalera, P.Bustamante, Int. J. Pharm., 178, 193 (1999).
https://doi.org/10.1016/S0378-5173(98)00375-5
 

Current number: