Funct. Mater. 2021; 28 (4): 803-809

doi:https://doi.org/10.15407/fm28.04.803

Properties of magnesium phosphate cement as electrolyte for structural supercapacitor

Zhou Changshun, Wang Qidong, YU Zhouping

Yuanpei College, Shaoxing University, 312000 Shaoxing, China

Abstract: 

The properties of cement based on magnesium phosphate (MPC) were investigated; the effect of various concentrations (3M, 6M and 9M) of alkalis LiOH, NaOH and KOH on the internal resistance, ionic conductivity and compressive strength of the structural electrolyte was studied. The results show that MPC-K9 is the optimal structural electrolyte. The maximum ionic conductivity of the MPC-K9 structural electrolyte was 16.85 mS·cm-1, which indicates its best electrochemical characteristics. An integrated structural supercapacitor is assembled with graphene electrodes and MPC-K9 structural electrolyte, and its electrochemical characteristics have been measured. The cyclic voltammetry curve was nearly rectangular in shape, indicating a typical double layer effect. The constructive supercapacitor had a surface capacity 16.72 mF/cm2 and a compressive strength 5.9 MPa. The structural supercapacitor shows good stability and reversibility with 94.50 % capacity retention after 3000 cycles. Thus, magnesium phosphate cement can be used in the field of energy storage in buildings.

Keywords: 
magnesium phosphate cement, electrolyte, structural supercapacitors, compressive strength, electrochemical performance.
References: 
1. S.L.Min, H.J.Choi, J.B.Baek et al., Appl. Energy, 195, 1071 (2016).
https://doi.org/10.1016/j.apenergy.2016.07.107
 
2. A.Burke, J. Power Sources, 91, 37 (2000).
https://doi.org/10.1016/S0378-7753(00)00485-7
 
3. F.Beguin, E.Frackowiak, J. Solid State Electr., 19, 1253 (2015).
https://doi.org/10.1007/s10008-014-2718-2
 
4. P.Simon, Y.Gogotsi, Nat. Mater., 7, 845 (2008).
https://doi.org/10.1038/nmat2297
 
5. R.Ko''tz, M.Carlen, Electrochim. Acta, 45, 2483 (2000).
https://doi.org/10.1016/S0013-4686(00)00354-6
 
6. J.Yan, Q.Wang, T.Wei et al., Adv. Energy Mater., 4, 157 (2014).
https://doi.org/10.1002/aenm.201400500
 
7. H.M.Jeong, J.W.Lee, W.H.Shin et al., Nano Lett. , 11, 247 (2011).
https://doi.org/10.1021/nl2009058
 
8. G.Wang, L.Zhang, J.Zhang, Chem. Soc. Rev., 41, 797 (2012).
https://doi.org/10.1039/C1CS15060J
 
9. Z.Tang, C.H.Tang, H.Gong, Adv. Funct. Mater., 22, 1272 (2012).
https://doi.org/10.1002/adfm.201102796
 
10. S.Giri, D.Ghosh, C.K.Das, Adv. Funct. Mater., 24, 1312 (2014).
https://doi.org/10.1002/adfm.201302158
 
11. K.S.Novoselov, A.K.Geim, S.V.Morozov et al., Science, 306, 666 (2004).
https://doi.org/10.1126/science.1102896
 
12. Y.W.Son, M.L.Cohen, S.G.Louie, Nature, 444, 347 (2006).
https://doi.org/10.1038/nature05180
 
13. M.Guo, X.Yi, G.Liu et al., Compas. Sci. Technol., 97, 27, (2014).
https://doi.org/10.1016/j.compscitech.2014.03.020
 
14. C.Lee, X.Wei, J.W.Kysar et al., Science, 321, 385 (2008).
https://doi.org/10.1126/science.1157996
 
15. A.A.Balandin, S.Ghosh, W.Bao et al., Nano Lett., 8, 902 (2008).
https://doi.org/10.1021/nl0731872
 
16. M.D.Stoller, S.Park, Y.Zhu et al., Nano Lett., 8, 3498 (2008).
https://doi.org/10.1021/nl802558y
 
17. J.Zhang, J.Xu, Z.Dong, J. Electrochem. Soc., 163, E83 (2016).
https://doi.org/10.1149/2.0801603jes
 
18. A.Arora, B.Singh, P.Kaur, Mater. Today Proc., 17, 70 (2019).
https://doi.org/10.1016/j.matpr.2019.06.402
 
19. X.Jia, J.Li, P.Wang et al., Constr. Build. Mater., 229, 116927 (2019).
https://doi.org/10.1016/j.conbuildmat.2019.116927
 
20. Y.Du, J.Yang, B.S.Thomas et al., Constr. Build. Mater., 260, 120449 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.120449
 
21. Y.Zhang, S.Wang, L.Li et al., Constr. Build. Mater., 262, 119893 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.119893
 
22. D.Zhong, S.Wang, L.Wang, Constr. Build. Mater., 264, 120679 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.120679
 
23. D.Hou, D. Chen, X. Wang et al., Constr. Build. Mater., 263, 120190 (2020).
https://doi.org/10.1016/j.conbuildmat.2020.120190
 
24. Y.Li, W.Bai, T.Shi, Constr. Build. Mater., 142, 459 (2017).
https://doi.org/10.1016/j.conbuildmat.2017.03.090
 
25. Q.Yang, B.Zhu, X.Wu, Mater. Struct., 33, 229 (2000).
https://doi.org/10.1007/BF02479332
 

Current number: