Funct. Mater. 2022; 29 (1): 107-117.

doi:https://doi.org/10.15407/fm29.01.107

Microbial degradation of polyetherguanidinacrylates

M.Ya.Vortman1, Zh.P.Kopteva2, A.E.Kopteva2, D.R.Abdulina2, G.O.Iytynska2, V.N.Lemeshko1, V.V.Shevchenko1

1Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Highway, 02160 Kyiv, Ukraine
2D.K.Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Acad. Zabolotny Str., 03143 Kyiv, Ukraine

Abstract: 

Film-forming polyguanidinacrylates of a three-dimensional structure are synthesized by the interaction of oligoepoxide with guanidine and methacrylic acid or by the reaction of an oligoether with terminal guanidine fragments with urethane prepolymer and ethylene glycol methacrylic ether, followed by UV-initiated polymerization. According to the results of IR spectroscopy and thermograviometric analysis, the biodegradation of polymer materials occurs on the surface of these polymers without changing the internal chemical structure. The tensile strength and elongation of polyacrylates after the action of hydrocarbon-oxydizing bacteria do not change significantly, which indicates the stability of polymers and the possibility of their use as insulating coatings. In the presence of polyetheracrylate, the catalase activity of bacteria increased in 1.9-2.5Ntimes, and in the presence of polyether urethane acrylate, it decreased by 1.7 times. The studied materials stimulated the lipolytic activity of bacteria by 1.3-3.7 times and did not inhibit the growth of bacteria and their metabolic activity. An assessment of the biodegradation degree of the materials under the bacteria exposure showed that polyetheracrylate has the greatest degradation in the range of 3.1-3.6 %, for polyether urethane acrylate the degree was decreased by 2.6 times compared with control.

Keywords: 
polyguanidine acrylates, IR spectroscopy, thermogravimetry, biodegradation.
References: 
1. M.I.Shtilman, J. Siber. Feder. Univ. Biology, 2, 113 (2015).
https://doi.org/10.17516/1997-1389-2015-8-2-113-130
 
2. F.Kawai Studiesin, Polym. Sci., 24 (1994).
https://doi.org/10.1016/B978-0-444-81708-2.50009-9
 
3. A.Amobonye, P.Bhagwat, S.Singh et al., Sci. of Tot. Envir., 759, 10 (2021).
https://doi.org/10.1016/j.scitotenv.2020.143536
 
4. V.M.Pathak, Bioresour. Bioprocess, 4, 1 (2017).
https://doi.org/10.1186/s40643-017-0145-9
 
5. D.Iram, R.Riaz, R.K.Iqbal, Open Access Review Article ID. OJEB-4, 110 (2019).
 
6. V.Gambarini, O.Pantos et al., Appl. and Envir. Sci., 6, 1112 (2021).
https://doi.org/10.1128/mSystems.01112-20
 
7. S.M.Satti, A.A.Shah, Lett. in Appl. Microb., 70, 413 (2020).
https://doi.org/10.1111/lam.13287
 
8. H.Fesseha, F.Abebe, Public Health., 4, 57 (2019).
https://doi.org/10.17140/PHOJ-4-136
 
9. E.Stanaszek-Toma, Coatings, 10, 2 (2020).
https://doi.org/10.3390/coatings10121203
 
10. S.Ghosh, S.Pal, S.Ray, Environ. Sci. Pollut. Res. Int., 20, 4339 (2013).
https://doi.org/10.1007/s11356-013-1706-x
 
11. S.Yoshida, K.Hiraga, T.Takehana et al., Sci., 351, 1196 (2016).
https://doi.org/10.1126/science.aad6359
 
12. R.Devi, V.Kannan, K.Natarajan et al., Environ. Waste. Manag., 12, 341 (2015).
 
13. Zh.P.Kopteva, V.V.Zanina, M.A.Boretskaya et al., Microbiol. Zhurn., 75, 41 (2013).
 
14. K.I.Andreyuk, I.P.Kozlova, Zh.P.Kopteva et al., Microbial Corrosion of Underground Structures, Naukova Dumka, Kiev (2005) [in Russian].
 
15. N.N.Laskovenko, Zh.P.Kopteva, M.A. ??? et al., Polym. J., 7, 149 (2015).
 
16. A.Magnin, E.Pollet, V.Phalip, L. Averous Biotechnology Advances, 1 (2019).
 
17. G.T.Howard, International Biodeterioration, 49, 245 (2002).
https://doi.org/10.1016/S0964-8305(02)00051-3
 
18. G.T.Howard. Recent Developments in Polymer Recycling, 215 (2011).
 
19. S.Pradhan, S.Mohanty, S.K.Nayak, J. Polym Environ., 26, 1133 (2018).
https://doi.org/10.1007/s10924-017-1021-6
 
20. S.Divjalakshmi, A.J.Subhashini, J. Environ. Sci. Toxicol. Food Technol., 10, 1 (2016).
 
21. Methods in Enzymatic Analysis, ed. by H.Luck, Academic Press, London (1963).
 
22. IR Spectra of the Main Classes of Organic Compounds, ed. by B.N.Tarasevich, Moscow (2012) [in Russian].
 
23. Handbook of Thermal Analysis, T.Hatakeyama, Liu Zhenhai, Ibaraki, Japan (1999).
 
24. C.Abrusci, J.L.Pablos I. Mar'n et al., J. Appl. Polym. Sci., 126, 1664 (2012).
https://doi.org/10.1002/app.36989
 
25. R.Wang, F.Damanik, T.Kuhnt et al., Materials Science, Apr 01, Version 1, 1 (2020).
 
26. X.Feng, G.Wang, K.Neumann et al., Mater. Sci. Eng. C Mater. Biolog. Applic., 74, 270 (2016).
https://doi.org/10.1016/j.msec.2016.12.009
 
27. S.Pradhan, S.Mohanty, S.K.Nayak, J. Polym. Environ., 26, 1133 (2018).
https://doi.org/10.1007/s10924-017-1021-6
 
28. K.Sklenickova, S.Abbrent, M.Halecky et al., Crit. Rev. Envir. Sci. Technol., ????? (2020).
 
29. O.A.Gogoleva, N.V.Nemtseva, Appl. Biochem. and Microbiol., 48, 612 (2012).
https://doi.org/10.1134/S0003683812060051
 
30. G.O.Iytynska, M.Ya.Vortman, Zh.P.Kopteva et al., Biotech. Acta, 13, 61 (2020).
 
31. D.R.Abdulina, Zh.P.Kopteva et al., Microbiol. and Biotechnol., 2, 51 (2019).

Current number: