Funct. Mater. 2022; 29 (1): 144-153.

doi:https://doi.org/10.15407/fm29.01.144

Ring aromaticity via local π-electron energies. Applications to polycondensed conjugated structures

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Stability of large polycyclic aromatic hydrocarbons (PAHs) is closely related to local aromaticity of their constituent benzenoid rings. In the present paper we propose a very simple method for ring aromaticity by special local energy aromaticity (LEA) indexes computed within the customary π-electron scheme due to Pariser, Parr and Pople. By the LEA approach, various structural types of PAHs are treated (linear acenes, graphene molecules, Clar's polybenzenoid structures, polyradicals of triangulene type, etc.) in dependence of their size and spin-charge state. Comparison with the known sufficiently reliable six-cycle aromaticity measure allows to consider the LEA technique as a quite reasonable and suitable approach to quantifying π-electron aromaticity.

Keywords: 
aromaticity quantification, charged and spin states, PAHs, triangulenes, graphene quantum dots.
References: 
1. P.J.Garratt, Aromaticity, Wiley, New York (1986)
 
V.I.Minkin, M.N.Glukhovtsev, B.Ya.Simkin, Aromaticity and Antiaromaticity: Electronic and Structural Aspects, John Wiley, New York (1994).
 
2. O.E.Polanski, G.Derflinger, Int. J. Quantum Chem., 1, 379 (1967).
https://doi.org/10.1002/qua.560010412
 
3. Z.Zhou, Int. Rev. Phys. Chem., 11, 242 (1992).
https://doi.org/10.1080/01442359209353271
 
4. A.R.Katritzky, K.Jug, D.C.Oniciu, Chem. Rev., 101, 1421 (2001).
https://doi.org/10.1021/cr990327m
 
5. Z.Chen, C.S.Wannere, C.Corminbouef et al., Chem. Rev., 105, 3843 (2005).
https://doi.org/10.1021/cr030088+
 
6. T.M.Krygowski, H.Szatylowicz, O.A Stasyuk et al., Chem. Rev., 114, 6383 (2014).
https://doi.org/10.1021/cr400252h
 
7. R.Gershoni-Poranne, A.Stanger, Chem. Soc. Rev., 44, 6597 (2015).
https://doi.org/10.1039/C5CS00114E
 
8. F.Feixas, E.Matito, J.Poater, M.Sola, Chem. Soc. Rev., 44, 6434 (2015).
https://doi.org/10.1039/C5CS00066A
 
9. J.N.A.F.Gomes, R.B.Mallion, Chem. Rev., 101, 1349 (2001).
https://doi.org/10.1021/cr990323h
 
10. P.Lazzaretti, Phys. Chem. Chem. Phys., 6, 217 (2004)
https://doi.org/10.1039/B311178D
 
R.Hershoni-Poranne, A.Stanger, in Aromaticity: Modern Computational Methods and Applications, ed. by I.Fernandez, Elsevier, Chapter 4 (2021).
 
11. P.Bultinck, Faraday Discuss., 135, 347 (2007).
https://doi.org/10.1039/B609640A
 
12. A.V.Luzanov, Int. J. Quantum Chem., 111, 2196 (2011).
https://doi.org/10.1002/qua.22510
 
13. D.Setiawan, E.Kraka, D.Cremer, J. Org. Chem., 81, 9669 (2016).
https://doi.org/10.1021/acs.joc.6b01761
 
14. M.Makino, N.Nishino, J-i.Aihara, J. Phys. Chem. Org. Chem., 31, e3783 (2018).
https://doi.org/10.1002/poc.3783
 
15. K.Jug, A.M.Koster, J. Phys. Org. Chem., 4, 163 (2004)
https://doi.org/10.1002/poc.610040307
 
J.-i. Aihara, Bull. Chem. Soc. Jap., 81, 241 (2008).
https://doi.org/10.1246/bcsj.81.241
 
16. A.Brickstock, J.A.Pople, Trans. Faraday Soc., 50, 901 (1954).
https://doi.org/10.1039/tf9545000901
 
17. J.A.Pople, Trans. Faraday Soc., 49, 1375 (1953).
https://doi.org/10.1039/tf9534901375
 
18. N.S.Hush, J.A.Pople, Trans. Faraday Soc., 51, 600 (1955).
https://doi.org/10.1039/tf9555100600
 
19. A.D.McLachlan, Mol. Phys., 2, 271 (1959).
https://doi.org/10.1080/00268975900100261
 
20. G.Portera, J.Poater, J.M.Bofill et al., J. Org. Chem., 70, 2509 (2005).
https://doi.org/10.1021/jo0480388
 
21. P.Bultinck, M.Rafat, R.Poneck et al., J. Phys. Chem. A, 110, 7642 (2006).
https://doi.org/10.1021/jp0609176
 
22. D.W.Szczepanik, M.Sola,T.M.Krygowski et al., Phys. Chem. Chem. Phys., 20, 13430 (2018).
https://doi.org/10.1039/C8CP01108G
 
23. A.V.Luzanov, Kharkov Univ. Bull. Chem. Ser., 31, 6 (2018).
 
24. D.Yu,T.Stuyver, C.Rong et al., Phys. Chem. Chem. Phys., 21, 18195 (2019).
https://doi.org/10.1039/C9CP01623F
 
25. B.D.Milanez, J.C.V.Chagas, M.Pinheiro et al., Theor. Chem. Acc., 139, 113 (2020).
https://doi.org/10.1007/s00214-020-02624-w
 
26. F.Eisenhut, T.Kuhne, F.Garcia et al., ASC NANO, 14, 1011 (2020).
https://doi.org/10.1021/acsnano.9b08456
 
27. G.E.Vaiman, A.V.Luzanov, M.M.Mestechkin et al., Theor. Exp. Chem., 26, 69 (1991).
https://doi.org/10.1007/BF00536434
 
28. E.Clar, D.G.Stewart, J. Am. Chem. Soc., 75, 2667 (1953).
https://doi.org/10.1021/ja01107a035
 
29. A.A.Ovchinnikov, Theor. Chim. Acta, 47, 297 (1978).
https://doi.org/10.1007/BF00549259
 
30. A.Das, T.Muller, F.Plasser, H.Lischka, J. Phys. Chem. A, 120, 1625 (2016).
https://doi.org/10.1021/acs.jpca.5b12393
 
31. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).
https://doi.org/10.1063/1.4975196
 
32. N.Pavlicek, A.Mistry, Z.Majzik et al., Nature Nanotechn., 12, 308 (2017).
https://doi.org/10.1038/nnano.2016.305
 
33. S.Mishra, D.Beyer, R.Berger et al., J. Am. Chem. Soc., 142, 1147 (2020).
https://doi.org/10.1021/jacs.9b09212
 
34. S.Gil-Guerrero, M.Melle-Franco, A.Pena-Gallego, M.Mandado, Chem. Eur., 26, 16138 (2020).
https://doi.org/10.1002/chem.202003713
 
35. O.Xiang, J.Guo. J.Xu et al., J. Am. Chem. Soc., 142, 102 (2020).
https://doi.org/10.1021/jacs.0c02287
 
36. Y.Lu, K.-W.Huang, Z.Sun et al., Chem. Sci., 5, 1908 (2014).
https://doi.org/10.1039/c3sc53015a
 
37. S.Mishra, K.Xu, K.Eimre et al., Nanocale, 13, 1624 (2021).
https://doi.org/10.1039/D0NR08181G
 
38. E.Clar, Polycyclic Hydrocarbons. vol.1, Acad. Press, London (1964).
https://doi.org/10.1007/978-3-662-01665-7
 
39. G.Portella, J.Poater, M.Sola, J. Phys. Org. Chem., 18, 785 (2005).
https://doi.org/10.1002/poc.938
 
40. A.Mishra, D.J.Klein, T.Morikawa, J. Phys. Chem. A, 113, 1151 (2009).
https://doi.org/10.1021/jp8038797
 
41. J.Dominikowska, M.Palusiak, Phys. Chem. Chem. Phys., 13, 11976 (2011).
https://doi.org/10.1039/C1CP20530G
 
42. M.Antic, B.Furtula, S.Rdenkovic, J. Phys.Chem. A, 121, 3616 (2017).
https://doi.org/10.1021/acs.jpca.7b02521
 
43. Q.Chen, M.Baumgarten, M.Wagner et al., Angew. Chem. Int. Ed. Engl., 60, 11300 (2021).
https://doi.org/10.1002/anie.202102932
 
44. X.Yan, B.Li, L.-S.Lim, Acc. Chem. Res., 46, 2224 (2013).
https://doi.org/10.1021/ar400057n
 
45. A.D.Guclu, P.Potasz, M.Korkusinski, P.Hawrylak, Graphene Quantum Dots, Springer, Berlin-Heidelberg-New York (2014).
https://doi.org/10.1007/978-3-662-44611-9
 
46. A.V.Luzanov, in: Nanooptics, Nanophotonics, Nanostructures, and Their Applications. Springer Proc. in Physics, vol. 210, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2018), p.161.
https://doi.org/10.1007/978-3-319-91083-3_11
 
47. M.Head-Gordon, Chem. Phys. Lett., 372, 508 (2003).
https://doi.org/10.1016/S0009-2614(03)00422-6

Current number: