Funct. Mater. 2022; 29 (1): 172-181.


An investigation of mechanical properties of different nanoparticle reinforced 7075-T6 Al matrix hybrid fiber metal laminated composites

Nurlan Gurbanov1, Mustafa Yunus Askin2, Mustafa Babanli1, Yunus Turen3

1Department of Mechanical and Materials Science Engineering, Azerbaijan State Oil and Industry University, Azerbaijan
2Materials Research and Development Center, Iron & Steel Institute, Karabuk University, Turkey
3 Department of Metallurgical and Materials Engineering, Karabuk University, Turkey


The mechanical properties of a hybrid fibrous metal layered composite have been studied. Samples were obtained by hot pressing unidirectional carbon fiber fabric and epoxy resin with aluminum sheets of quality 7075-T6, 1 mm thick. In the first production, epoxy resin was used without additives. In the second production, 0.5% clay and SiO2 nanoparticles were added to the epoxy resin. Shown, that adding nanoparticles to pure epoxy resin in a laminated composite improves its mechanical properties through improved adhesive properties and crack-bridging mechanisms between fiber and nanoparticles, as evidenced by changes in the microstructure.

hybrid fiber metal laminated composites; clay; tensile test; impact test
1. H.T.Hahn, S.W.Tsai, Introduction to Composite Materials, CRC Press, (1980).
2. H.Saleh., M.Koller, Characterizations of Some Composite Materials, BoD <196> Books on Demand (2019).
3. T.G.Jabbarov, O.A.Dyshin, M.B.Babanli, et al., Prog. Phys. Met., 20, 4 (2019).
4. A.R.Sadygova, I.I.Abbasov, E.S.Safiev, et al., Nanosistemi Nanomateriali Nanotehnologii, 17, 1 (2019).
5. A.V. Benedict, An Experimental Investigation of GLARE and Restructured Fiber Metal Laminates, Embry-Riddle Aeronautical University, ProQuest Dissertations Publishing, (2012).
6. M.Kashfi, G.H.Majzoobi, N.Bonora, et al., Engineering Fracture Mechanics, 206, (2019).
7. X.Dou, S.D.Malingam, J.Nam, et al., World Journal of Engineering and Technology, 33, (2015).
8. S.U.Khan, J.K.Kim, Carbon, 50, 14 (2012).
9. P.Cortes, W.J.Cantwell, Journal of Materials Science, 39, (2004).
10. K.Senthila, M.A.Iqbala, P.S.Chandel, et al., International Journal of Impact Engineering, 108, (2017).
11. T.P.Reddy, Adv Compos Hybrid Mater, 3, (2020).
12. R.E.Zinkham, Eng Fract Mech, 1, (1968).
13. A. Asundi, A.Y. Choi, Journal of Materials Processing Technology, 63, 1 (1997).
14. L.B.Vogelesang, A.Vlot, Journal of Materials Processing Technology, 103, 1 (2000).
15. A.Salve, R.Kulkarni, A.Mache, International Journal of Engineering Technology and Science (IJETS), 6, 1 (2016).
16. S.Palani, L.Kamaraj, M.Venkatasudhahar, et al., International Journal of Mechanical & Mechatronics Engineering, 15, 3 (2014).
17. S.Bhat, S.Narayanan, ARPN Journal of Engineering and Applied Sciences, 9, 9 (2014).
18. T.H.Mahdi, M.Islam, et al., Journal of Reinforced Plastics and Composites, 36, 9 (2017).
19. J.I.Mugica, L.Aretxabaleta, I.Ulacia, et al., Compos A, 61, (2014).
20. M.Y.Askin, Y.Turen, Mater Res Express, 6, (2019).
21. Y.Arao, S.Yumitori, H.Suzuki, et al., Compos. Part A Appl. Sci. Manuf, 55, (2013).
22. M.H.Pol, G.H.Liaghat, E.M.Yeganeh, et al., In Persian. Modares Mech Eng., 14, (2015).
23. F.Bahari, S.R.Eslami, S.A. Chirani, Journal of Sandwich Structures and Materials, (2018).
25. P.P.Binu, E.Georgeb, M.N.Vinodkumara, Procedia Technology, 25, (2016).
26. A.Afrouzian, H.Aleni, G.Hossein, et al., Journal of Reinforced Plastics and Composites, 36, 12 (2017).
27. Y.Rostamiyan, A.Fereidoon, M.Rezaeiashtiyani, et al., Mater Design, 69, (2015).

Current number: