Funct. Mater. 2022; 29 (1): 20-29.

doi:https://doi.org/10.15407/fm29.01.20

New approaches to creating promising heat-conductive electrical insulating polyimide nanocomposite materials

V.M.Borshchov1, O.M.Listratenko1, M.A.Protsenko1, I.T.Tymchuk1, O.V.Kravchenko1, O.V.Suddia1, M.I.Slipchenko2, B.M.Chichkov3, O.V.Slipchenko4

1Limited Liability Company "Research and production enterprise "LTU", 3 Novgorodska Str., 61145 Kharkiv, Ukraine
2Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3Institute of Quantum Optics, Leibniz Universitat Hannover, 1 Welfengartenstrasse, 30167 Hannover, Germany
4National Technical University "Kharkiv Polytechnic Institute", Kyrpychova str. 2, 61002, Kharkiv, Ukraine

Abstract: 

This review is intended to analysis of works in field of creating electrically insulating heat-conductive polyimide composite films based on powders of micro- and nanoparticles with high dielectric and heat-conductive properties for use as effective thermal interface materials in various electronic devices in instrument engineering. Particular attention is paid to studies on the effect of size of nano- and microparticles of inorganic fillers on heat-conducting, dielectric, and physic-mechanical properties of nanocomposite polyimide materials. Carried-out analysis of results of works on studying dependence of thermal conductivity on ratio of micro- and nano-sized particles in mixtures and their amount in polyimides and on conditions of their polymerization for confirming possibility to increase values of thermal conductivity of promising polyimide materials from 0.12 W/m·K up to 5-10 W/m·K.

Keywords: 
electrical insulating heat-conductive polyimide composite films, micro- and nanoparticles, inorganic fillers.
References: 
1. Y.Yoo et al., in: Proc. 18th Intern. Conf. Comp. Mat. Korea, August 21-26, 3 (2011).
 
2. A.Krivatkin, Yu.Saunenko, Semicond. Light. Technol., 1, 54 (2010).
 
3. K.C.Yung et al., Polym. Sci. B:Polym. Phys., 43, 13, 1662 (2007).
https://doi.org/10.1002/polb.21201
 
4. V.M.Khumalo, J.Karger-Kocsis, R.Thomann, Express Polym. Lett., 4, 5, 264 (2010).
https://doi.org/10.3144/expresspolymlett.2010.34
 
5. Z.Han, A.Fina, Prog. Polym. Sci., 36, 7, 914 (2011).
https://doi.org/10.1016/j.progpolymsci.2010.11.004
 
6. V.Kosnyrev, Power Electron., 2, 118 (2008).
 
7. M.Piao et al., Phys. Status Solidi(b)., 250, 12, 2529 (2013).
https://doi.org/10.1002/pssb.201300078
 
8. S.M.Lebedev, O.S.Gefle, A.E.Strizhkov, IEEE Trans. Dielectr. Electr. Insul., 20, 1, 289 (2013).
https://doi.org/10.1109/TDEI.2013.6451369
 
9. X.Wang et al., Nanoscale Res. Lett., 7, 662 (2012).
https://doi.org/10.1186/1556-276X-7-662
 
10. A.S.Egorov et al., Plastic Masses, 5-6, 6 (2019).
 
11. Yanfei Xu et al., Molecular engineered conjugated polymer with high thermal conductivity, Sci. Adv., (2018).
 
12. L.K. Oliferov, Dis. Ph.D. (2016).
 
13. A.S.Egorov, D.is. Ph.D. (2018).
 
14. Tabkh Paz Majid et al., Compos. B., 100, 19 (2016).
https://doi.org/10.1016/j.compositesb.2016.06.036
 
15. TengChih-Chun et al., Compos. B, 43, 2, 265 (2012).
 
16. E.A.Nikolaeva, A.N.Timofeev, K.V.Mikhailovsky, Inform. Techn, Bulletin, 15, 1, 156 (2018)
https://doi.org/10.21499/2409-1650-2018-1-156-168
 
17. B.A.Zhubanov et al., Chem. J. Kazakhstan, 3, 15 (2014).
 
18. K.B.Vernigorov, Abstract. Dis. Ph. D. (2012).
 
19. S.V. Kryuchkova et al., Vestn. Moscow Univer. Ser. 2. Chem., 58. 5, 223 (2017).
 
20. R.U. Patent 2.636.084 (2017) [in Russian].
 
21. S.M.Ryzhova, Dis. Ph.D. (2015).
 
22. R.U. Patent 2,600,110 (2016) [in Russian].
 
23. Thermally conductive electrical insulating polyimide film, type KYPI-MT, http://ru.kying.com // official website (date of treatment 12/20/2020).
 
 
 

Current number: