Funct. Mater. 2022; 29 (1): 30-38.

doi:https://doi.org/10.15407/fm29.01.30

Detection of regularities of Y2Zr2O7 pyrochlor phase formation during the reaction of solid-phase synthesis under different temperature-time conditions

V.O.Chyshkala1, S.V.Lytovchenko1, V.P.Nerubatskyi2, R.V.Vovk1, E.S.Gevorkyan2, O.M.Morozova2

1V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine

Abstract: 

The basic regularities of phase formation in the pyrochlor synthesis depending on temperature regimes have been investigated. The mechanisms of formation and structural-phase evolution in the synthesis of new substances and consolidation of compounds of the Y2O3-ZrO2 system have been considered. Samples of an oxide sintered mass with a fraction of pyrochlorine phase Y2Zr2O7 up to 41 % were obtained. The features of increasing the proportion of pyrochlore, which promotes the activation of a chemical reaction, either by increasing the synthesis temperature to the temperatures of eutectic formation, or by increasing the reaction surface of the powders, are considered. It is established that the kinetics of an increase in pyrochlorine phase proportion in the samples indicates the desired increase in the chemical reaction activity, which can be achieved by increasing the synthesis temperature to the temperature of eutectic formation or increasing the reaction surface of powders.

Keywords: 
eutectic, yttrium oxide, zirconium oxide, pyrochlor, sintering.
References: 
. V.O.Chyshkala, S.V.Lytovchenko, E.S.Gevorkyan et al., SWorldJournal, 7, 17 (2021).
 
2. O.Morozova, V.Nerubatskyi, in: International Scientific Interdisciplinary Conference ISIC-2021 for Medical Students and Young Scientist, Kharkiv, Ukraine (2021), p.25.
 
3. E.Gevorkyan, V.Nerubatskyi, V.Chyshkala et al., Eastern-European Journal of Enterprise Technologies, 5, 6 (2021).
https://doi.org/10.15587/1729-4061.2021.242503
 
4. Q.Li, X.Hao, Y.Gui et al., Ceramics International, 47, 27188 (2021).
https://doi.org/10.1016/j.ceramint.2021.06.139
 
5. M.Boniecki, T.Sadowski, P.Golebiewski et al., Ceramics International, 46, 1 (2019).
https://doi.org/10.1016/j.ceramint.2019.09.068
 
6. G.Karthick, A.Karati, B.S.Murty, Journal of Alloys and Compounds, 837, 155491 (2020).
https://doi.org/10.1016/j.jallcom.2020.155491
 
7. S.Duluard, E.Delon, J.-P.Bonino et al., Journal of the European Ceramic Society, 39, 1451 (2018).
https://doi.org/10.1016/j.jeurceramsoc.2018.12.016
 
8. H.Li, Q.Tao, N.Li et al., Journal of Alloys and Compounds, 660, 446 (2016).
https://doi.org/10.1016/j.jallcom.2015.11.137
 
9. M.Kumar, I.Arul Raj, R.Pattabiraman, Materials Chemistry and Physics, 108, 102 (2008).
https://doi.org/10.1016/j.matchemphys.2007.09.010
 
10. Y.Tong, P.Xue, F.Jian et al., Materials Science and Engineering: B, 150, 194 (2008).
https://doi.org/10.1016/j.mseb.2008.04.009
 
11. H.Y.Xiao, F.Gao, W.J.Weber, Physical Review B, 80, 212102 (2009).
https://doi.org/10.1103/PhysRevB.80.212102
 
12. A.V.Belyakov, Glass and Ceramics, 3, 19 (1999).
 
13. S.Sikarwar, B.C.Yadav, S.Singh et al., Sensors and Actuators B: Chemical, 232, 283 (2016).
https://doi.org/10.1016/j.snb.2016.03.080
 
14. M.Chen, B.Hallstedt, L.Gauckler, Solid State Ionics, 170, 255 (2014).
https://doi.org/10.1016/j.ssi.2004.02.017
 
15. S.A.Degtyarev, G.F.Voronin, Journal Physical Chemistry, LXI, 611 (1987).
 
16. O.Fabrichnaya, F.Aldinger, Zeitschrift fur Metallkunde, 95, 27 (2004).
https://doi.org/10.3139/146.017909
 
17. L.Wang, X.H.Zhong, Y.X.Zhao et al., Journal of Asian Ceramic Societies, 2, 102 (2014).
https://doi.org/10.1016/j.jascer.2014.01.006
 
18. M.Asadikiya, H.Sabarou, M.Chen et al., RSC Advances, 6, 17438 (2016).
https://doi.org/10.1039/C5RA24330K
 
19. E.Gevorkyan, M.Rucki, T.Salacinski et al., Materials, 14, 12 (2021).
https://doi.org/10.3390/ma14123432
 
20. E.Gevorkyan, M.Rucki, Z.Krzysiak et al., Materials, 14, 6503 (2021).
https://doi.org/10.3390/ma14216503
 
21. Yu.M.Polezhaev, ZhFKh, 41, 2958 (1967).
 
22. A.V.Belyakov, Glass and Ceramics, 2, 16 (1999).
 
23. E.S.Gevorkyan, M.Rucki, A.A.Kagramanyan et al., International Journal of Refractory Metals and Hard Materials, 82, 336 (2019).
https://doi.org/10.1016/j.ijrmhm.2019.05.010
 
24. V.M.Arzhavitin et al., VANT, 5, 58 (2013).
 
25. E.Gevorkyan, V.Nerubatskyi, Yu.Gutsalenko et al., Eastern-European Journal of Enterprise Technologies, 6, 41 (2020).
https://doi.org/10.15587/1729-4061.2020.216733
 
26. E.S.Gevorkyan, V.P.Nerubatskyi, Yu.H.Gutsalenko et al., Modern Engineering and Innovative Technologies, 14, 46 (2020).
 
27. '.,.Starostenko, V.M.Voevodin, M.A.Tikhonovsky et al., Physico-chemical Mechanics of Materials, 51, 70 (2015).
 
28. .V.Alisin, M.A.Borik, A.V.Kulebyakin et al., Inorganic Materials, 6, 609 (2015).
 
29. V.V.Okovityi, Science and Technology, 5, 26 (2015).
 
30. E.S.Gevorkyan, V.P.Nerubatskyi, V.O.Chyshkala et al., Modern Engineering and Innovative Technologies, 15, 6 (2021).
https://doi.org/10.15587/1729-4061.2021.242503
 
31. E.Gevorkyan, A.Mamalis, R.Vovk et al., Journal of Instrumentation, 16, P10015 (2021).
https://doi.org/10.1088/1748-0221/16/10/P10015
 
32. V.A.Skuratov, A.S.Sohatsky, J.H.O'Connell et al., J. Nucl. Mater., 456, 111 (2015).
https://doi.org/10.1016/j.jnucmat.2014.09.034
 
33. P.Melnikov, V.A.Nascimento, L.Z.Consolo et al., J. of Therm. Analysis and Calorimetry, 111, 115 (2013).
https://doi.org/10.1007/s10973-012-2236-3
 
 
 

Current number: