Funct. Mater. 2022; 29 (1): 44-51.

doi:https://doi.org/10.15407/fm29.01.44

Growth mechanism, structure and thermoelectric properties of thermally evaporated Bi2(Te0.9Se0.1)3 thin films

E.I.Rogacheva1, S.I.Krivonogov2, A.G.Fedorov2, A.Yu.Sipatov1, A.N.Doroshenko1, O.N.Nashchekina1, K.V.Novak1

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The growth mechanism, crystal structure, and morphology of thin films with thicknesses d = 16-207 nm prepared by thermal evaporation in vacuum of p-Bi2(Te0.9Se0.1)3 polycrystal on glass substrates were studied using X-ray diffractometry and atomic force microscopy. The obtained polycrystalline thin films were single-phase and homogeneous, had a tetradymite-type structure and a unit cell parameter very close to that of Bi2(Te0.9Se0.1)3 polycrystal but, unlike the initial polycrystal, exhibited n-type conductivity. With increasing d, the grain size and roughness of the thin films increased. It was found that the predominant direction of the crystallite growth was [0 0 l], but at d larger than ~ 130 nm, along with the reflections from the (0 0 l) planes, weak reflections from other planes appeared, indicating a certain disorientation of crystallites. An increase in d led to a monotonic increase in the Seebeck coefficient, which indicated the presence of the classical size effect. The obtained data have shown that using a low-cost method of thermal evaporation in vacuum from a single source, one can grow thin Bi2(Te0.9Se0.1)3 films with partial Te -> Se substitution in Bi2Te3 of a sufficiently high quality with preferential orientation [0 0 l].

Keywords: 
Bi<sub>2</sub>(Te<sub>0.9</sub>Se<sub>0.1</sub>)<sub>3</sub> polycrystal, thermal evaporation, thin film, thickness, phase composition, crystal structure, microstructure, growth direction, Seebeck coefficient.
References: 
1. H.Scherrer, S.Scherrer, Bismuth Telluride, Antimony Telluride and their Solid Solution. In: CRC Handbook of Thermoelectric, ed. by D.M.Rowe, CRC Press, Boca Raton (1995), p.213-223.
https://doi.org/10.1201/9781420049718.ch19
 
2. L.E.Bell, Science, 321, 1457 (2008). http://dx.doi.org/10.1126/science.115889
https://doi.org/10.1126/science.1158899
 
3. L.Muchler, F.Casper, B.Yan et al., Phys. Status Solidi RRL, 7, 91 (2013). http://dx.doi.org/10.1002/pssr.201206411.
https://doi.org/10.1002/pssr.201206411
 
4. D.Culcer, Physica E, 44, 860 (2012). http://dx.doi.org/10.1016/j.physe.2011.11.003.
https://doi.org/10.1016/j.physe.2011.11.003
 
5. O.B.Sokolov, S.Ya.Skipidarov, N.I.Duvankov, G.G.Shabunina, J. Cryst. Growth., 262, 442 (2004).
https://doi.org/10.1016/j.jcrysgro.2003.10.073
 
6. T.C.Chasapis, D.Koumoulis, B.Leung et al., APL Materials, 3, 083601 (2015). https://doi.org/10.1063/1.4922857.
https://doi.org/10.1063/1.4922857
 
7. E.I.Rogacheva, A.V.Budnik, O.N.Nashchekina et al., J. Electron. Mater., 46, 3949 (2017). http://dx.doi.org/10.1007/s11664-017-5561-2.
https://doi.org/10.1007/s11664-017-5561-2
 
8. E.I.Rogacheva, O.N.Nashchekina, A.V.Budnik et al., Thin Solid Films, 612, 128 (2016). http://dx.doi.org/10.1016/j.tsf.2016.05.046
https://doi.org/10.1016/j.tsf.2016.05.046
 
9. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015). https://doi.org/10.1063/1.4907319
https://doi.org/10.1063/1.4907319
 
10. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Thin Solid Films, 594, 109 (2015). 10.1016/j.tsf.2015.10.023
https://doi.org/10.1016/j.tsf.2015.10.023
 
11. A.V.Budnik, E.I.Rogacheva, V.I.Pinegin et al., J. Electron. Mater., 42, 1324 (2013). https://doi.org/10.1007/s11664-012-2439-1
https://doi.org/10.1007/s11664-012-2439-1
 
12. R.Sathyamoorthy, J.Dheepa, J. Phys. Chem. Solids, 68, 111 (2007). http://dx.doi.org/ 10.1016/j.jpcs.2006.09.014
https://doi.org/10.1016/j.jpcs.2006.09.014
 
13. B.Jariwala, D.V.Shah, V.Kheraj, J. Nano-Electron. Phys., 3, 101 (2010). https://doi.org/10.1063/1.4732429
https://doi.org/10.1063/1.4732429
 
14. F.S.Bahabri, Life Science Journal, 9, 290 (2012). https://doi.org/10.7537/marslsj090112.41
 
15. J.J.Lee, F.T.Schmitt, R.G.Moore et al., Appl. Phys. Lett., 101, 013118 (2012). https://doi.org/10.1063/1.4733317
https://doi.org/10.1063/1.4733317
 
16. L.M.Goncalve, C.Couto, P.Alpuim et al., Thin Solid Films, 518, 2816 (2010). https://doi.org/10.1016/j.tsf.2009.08.038
https://doi.org/10.1016/j.tsf.2009.08.038
 
17. L.W.da Silva, M.Kaviany, C.Uher, J. Appl. Phys., 97, 1 (2005). http://dx.doi.org/10.1063/1.1914948
https://doi.org/10.1063/1.1914948
 
18. H.Zou, D.M.Rowe, S.G.K.Williams, J. Appl. Phys., 408, 270 (2002). http://dx.doi.org/ 10.1016/S0040-6090(02)00077-9
https://doi.org/10.1016/S0040-6090(02)00077-9
 
19. J.C.Tedenac, S.Dal Corso, A.Haidoux et al., Mat. Res. Soc. Symp. Proc., 545, 93 (1998). http://dx.doi.org/ 10.1557/PROC-545-93
https://doi.org/10.1557/PROC-545-93
 
20. M.Ferhat, J.C.Tedenac, J.Nagao, J. Crystal Growth, 218, 250 (2000). http://dx.doi.org/ 10.1016/S0022-0248(00)00582-0
https://doi.org/10.1016/S0022-0248(00)00582-0
 
21. M.Ferhat, B.Liautard, G.Brun et al., J. Cryst. Growth, 167, 122 (1996). http://dx.doi.org/ 10.1016/0022-0248(96)00247-3
https://doi.org/10.1016/0022-0248(96)00247-3
 
22. Y.Deng, Zh.Zhang, Y.Wang et al., J. Nanopart. Res., 14, 775 (2012). http:// dx.doi.org/ 10.1007/s11051-012-0775-y
https://doi.org/10.1007/s11051-012-0775-y
 
23. J.Numus, H.Bottner, H.Beyer et al., in: Proc. 18th Intern. Conf. on Thermoelectrics, (ICT'99), Baltimore, USA (1999), p.696. http://dx.doi.org/10.1109/ICT.1999.843481
https://doi.org/10.1109/ICT.1999.843481
 
24. J.Krumrain, G.Mussler, S.Borisova et al., J. Crystal Growth, 324, 115 (2011). http:// dx.doi.org/10.1016/j.jcrysgro.2011.03.008
https://doi.org/10.1016/j.jcrysgro.2011.03.008
 
25. J.J.Lee, F.T.Schmitt, R.G.Moore et al., Appl. Phys. Lett., 101, 013118 (2012). https:// doi.org/10.1063/1.4733317
https://doi.org/10.1063/1.4733317
 
26. M.W.Oh, J.H.Son, B.S.Kim et al., J. Appl. Phys., 115, 133706 (2014) http://dx.doi.org/ 10.1063/1.4870818
https://doi.org/10.1063/1.4870818
 
27. T.Zhu, L.Hu, X.Zhao et al., Adv. Sci., 3, 1600004 (2016). https://doi.org/10.1002/ advs.201600004
https://doi.org/10.1002/advs.201600004
 
28. L.Hu, T.Zhu, X.Liu et al., Adv. Funct. Mater., 24, 5211 (2014). https://doi.org/10.1002/ adfm.201400474
https://doi.org/10.1002/adfm.201400474
 
29. N.A.Abdullaev, S.I.Mekhtieva, N.P.Memmedov et al., Fizika i Tekhnika Poluprovodnikov, 44, 853 (2010).
 
30. N.A.Abdullaev, N.M.Abdullaev, A.M.Kerimova et al., Semiconductors, 46, 1140 (2012).
https://doi.org/10.1134/S1063782612090023
 
31. N.A.Abdullayev, N.M.Abdullayev, K.V.Aliquliyeva et al., Fizika i Tekhnika Poluprovodnikov, 47, 586 (2013).
 
32. N.A.Abdullayev, A.M.Kerimova, K.V.Aliquliyeva et al., Phys. Status Solidi C, 12, 822 (2015). https://doi.org/10.1002/pssc.201400338
https://doi.org/10.1002/pssc.201400338
 
33. R.K.Gopal, S.Singh, R.Chandra et al., AIP Advances, 5, 047111 (2015). https:// doi.org/10.1063/1.4917455.
https://doi.org/10.1063/1.4917455
 
34. N.A.Abdullaeva, O.Z.Alekperova, Kh.V.Aligulievaa et al., Physics of the Solid State, 58, 1870 (2016). https://doi.org/10.1134/ S106378341609002X.
https://doi.org/10.1134/S106378341609002X
 
35. P.H.Le, S.-P.Shiu, S.-R.Jian et al., J. Alloys and Compounds, 679, 350 (2016). https://doi.org/10.1016/j.jallcom.2016.03.226.
https://doi.org/10.1016/j.jallcom.2016.03.226
 
36. V.A.Kutasov, L.N.Lukyanova, P.P.Konstantinov, Fiz. Tverd. Tela, 42, 1985 (2000).
 
37. E.I.Rogacheva, E.V.Martynova, T.N.Shelest et al., Materials Today: Proceedings, 44, 3506 (2019).https://doi.org/10.1016/j.matpr.2020. 09.159.
 

Current number: