Funct. Mater. 2022; 29 (1): 5-19.

doi:https://doi.org/10.15407/fm29.01.5

Removal of the Am-241 from aqueous solutions using different sorbents

T.A.Blank1, S.V.Khimchenko1, K.N.Belikov1,2, V.A.Chebanov1,2

1State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

This review is devoted to the problem of extracting americium from aqueous media of various origins by the sorption method based on the materials of modern world scientific studies published during two last decades. The methods for quantitative assessments of the effectiveness of sorbents are considered. The selection of data for Am(III) was substantiated taking into account the fact that trivalent lanthanides, especially Eu, are oten taken as a chemical analogue of trivalent actinides Am and Cm. Various types of sorbents and materials used for binding americium radionuclides, methods of their preparation and sorption mechanisms are considered in detail. In addition, this review comprehensively considers sorption processes involving americium occurring in radioactive storages.

Keywords: 
Americium, sorption method
References: 
1. W.Yantasee, G.E.Fryxell, K.Pattamakomsan et al., J. Hazard. Mater., 366, 677 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.043.
https://doi.org/10.1016/j.jhazmat.2018.12.043
 
2. K.Singhal, H.Basu, V.Manisha et al., Desalination, 280, 313 (2011). https://doi.org/10.1016/j.desal.2011.07.016.
https://doi.org/10.1016/j.desal.2011.07.016
 
3. M.K.Modi, P.Pattanaik, N.Dash, S.Subramanian, Int. J. Pharm. Sci. Rev. Res., 34, 122 (2015). https://globalresearchonline.net/journalcontents/v34-1/19.pdf.
 
4. X.Zhanga, Y.Liu, Environ. Sci.:Nano, 7, 1008 (2020). https://doi.org/10.1039/C9EN01341E .
https://doi.org/10.1039/C9EN01341E
 
5. C.D.Black, A.Paulenova, J.L.Lapka, J. Radioanal. Nucl. Chem., 320, 299 (2019). https://doi.org/10.1007/s10967-019-06483-z.
https://doi.org/10.1007/s10967-019-06483-z
 
6. Y.V.Konevnik, K.V.Martynov, Y.Yu.Karaseva et al., J. Radioanal. Nucl. Chem., 321, 83 (2019). https://doi.org/10.1007/s10967-019-06569-8 .
https://doi.org/10.1007/s10967-019-06569-8
 
7. S.K.Pathak, S.C.Tripathi, A.K.Mahtele et al., J. Radioanal. Nucl. Chem., 308, 47 (2016). https://doi.org/10.1007/s10967-015-4330-z .
https://doi.org/10.1007/s10967-015-4330-z
 
8. L.Fuks, L.Maskalchuk, I.Herdzik-Koniecko, T.Leontieva, J. Radioanal. Nucl. Chem., 320, 87 (2019). https://doi.org/10.1007/s10967-019-06449-1 .
https://doi.org/10.1007/s10967-019-06449-1
 
9. S.C.Tripathi, R.Kannan, P.S.Dhami et al., J. Radioanal. Nucl. Chem., 287, 691 (2011). https://doi.org/10.1007/s10967-010-0949-y .
https://doi.org/10.1007/s10967-010-0949-y
 
10. Y.Sun, Z.Wu, X.Wang et al., Environ. Sci. Technol., 50, 4459 (2016). https://doi.org/10.1021/acs.est.6b00058 .
https://doi.org/10.1021/acs.est.6b00058
 
11. H.S.Hassan, M.I.A.Abdel Maksoud, L.A.Attia, J. Mater. Sci: Mater. Electron., 31, 1616 (2020). https://doi.org/10.1007/s10854-019-02678-y .
https://doi.org/10.1007/s10854-019-02678-y
 
12. O.B.Mokhodoeva, G.V.Myasoedova, E.A.Zakharchenko, Radiochemistry, 53, 35 (2011). https://doi.org/10.1134/S106636221101005X .
https://doi.org/10.1134/S106636221101005X
 
13. D.K.Das, S.Kumar, P.N.Pathak et al., J. Radioanal. Nucl. Chem., 289, 137 (2011). https://doi.org/10.1007/s10967-011-1045-7 .
https://doi.org/10.1007/s10967-011-1045-7
 
14. V.V.Levenets, A.Yu.Lonin, O.P.Omelnik et al., Probl. At. Sci. Technol. (PAST), 125, 121 (2020). https://doi.org/10.46813/2020-125-121.
https://doi.org/10.46813/2020-125-121
 
15. Th.Rabung, M.C.Pierret, A.Bauer et al., Geochim. Cosmochim. Acta, 69, 5393 (2005). https://doi.org/10.1016/j.gca.2005.06.030 .
https://doi.org/10.1016/j.gca.2005.06.030
 
16. Y.Tachia, M.Ochs, T.Suyam, J. Nucl. Sci. Technol., 51, 1177 (2014). https://doi.org/10.1080/00223131.2014.914452.
https://doi.org/10.1080/00223131.2014.914452
 
17. V.Diesen, K.Forsberg, M.Jonsson, J. Hazard. Mater., 340, 384 (2017). http://dx.doi.org/10.1016/j.jhazmat.2017.07.008.
https://doi.org/10.1016/j.jhazmat.2017.07.008
 
18. B.Luckscheiter, M.Nesovic, ?????90, 537 (2002). https://doi.org/10.1524/ract.2002.90.9- 11_2002.537 .
https://doi.org/10.1524/ract.2002.90.9-11_2002.537
 
19. S.El Mrabet, M.A.Castro, S.Hurtado et al., Am. Mineral., 99, 696 (2014). http://dx.doi.org/10.2138/am.2014.4665 696 .
https://doi.org/10.2138/am.2014.4665
 
20. K.St'astna, P.Distler, J.John, F.Sebesta, J. Radioanal. Nucl. Chem., 312, 685 (2017). http://dx.doi.org/10.1007/s10967-017-5260-8 .
https://doi.org/10.1007/s10967-017-5260-8
 
21. M.Ochs, D.Mallants, L.Wang, Sorption Values for Americium. in: Radionuclide and Metal Sorption on Cement and Concrete. Topics in Safety, Risk, Reliability and Quality, 9999 (2016). Springer, Cham, ISBN 978-3-319-23651-3. https://doi.org/10.1007/978-3-319-23651-3 .
https://doi.org/10.1007/978-3-319-23651-3
 
22. M.Ding, S.Kelkar, A.Meijer, J. Environ. Radioactivity, 136, 181 (2014). http://dx.doi.org/ 10.1016/j.jenvrad.2014.06.007 .
https://doi.org/10.1016/j.jenvrad.2014.06.007
 
23. D.Li, D.I.Kaplan, J. Hazard. Mater., 243, 1 (2012). http://dx.doi.org/10.1016/j.jhazmat. 2012.09.011 .
 
24. B.Hu, Q.Hub, X.Lib et al., J. Mol. Liq., 229, 6 (2017). http://dx.doi.org/10.1016/j.molliq.2016.12.030.
https://doi.org/10.1016/j.molliq.2016.12.030
 
25. C.R.Kumar, V.Vijayakumar, A.Suresh et al., J. Radioanal. Nucl. Chem., 321, 617 (2019). http://dx.doi.org/10.1007/s10967-019-06618-2 .
https://doi.org/10.1007/s10967-019-06618-2
 
26. A.S.Suneesh, R.Jain, K.A.Venkatesan et al., Solvent Extr. Ion Exc., 33, 656 (2015). http://dx.doi.org/10.1080/07366299.2015.1082826.
https://doi.org/10.1080/07366299.2015.1082826
 
27. P.Zhao, M.Zavarin, R.N.Leif et al., Appl. Geochem., 26, 308 (2011). http://dx.doi.org/ 10.1016/j.apgeochem.2010.12.004 .
https://doi.org/10.1016/j.apgeochem.2010.12.004
 
28. I.Sanchez-Garcia, A.Nunez, L.J.Bonales et al., Radiat. Phys. Chem., 165, 108395 (2019). https://doi.org/10.1016/j.radphyschem.2019.108395 .
https://doi.org/10.1016/j.radphyschem.2019.108395
 
29. I.D.Troshkina, Ya.A.Obruchnikova, S.M.Pestov, Russ. J. Gen. Chem., 89, 2721 (2019). https://doi.org/10.1134/S107036321912048X.
https://doi.org/10.1134/S107036321912048X
 
30. A.S.Suneesh, K.V.Syamala, K.A.Venkatesan et al., J. Colloid Interface Sci., 438, 55 (2015). http://dx.doi.org/10.1016/j.jcis.2014.09.076 .
https://doi.org/10.1016/j.jcis.2014.09.076
 
31. K.St'astna, J.John, F.Sebesta, M.Vlk, J. Radioanal. Nucl. Chem., 304, 349 (2015). http://dx.doi.org/10.1007/s10967-014-3544-9 .
https://doi.org/10.1007/s10967-014-3544-9
 
32. R.B.Gujar, P.K.Mohapatra, RSC Adv., 5, 24705 (2015). http://dx.doi.org/10.1039/c4ra14826f .
https://doi.org/10.1039/C4RA14826F
 
33. Y.Sun, Q.Wang, C.Chen et al., Environ. Sci. Technol., 46, 6020 (2012). http://dx.doi.org/10.1021/es300720f .
https://doi.org/10.1021/es300720f
 
34. K.Bhagyashree, A.Kar, S.Kasar et al., J. Radioanal. Nucl. Chem., 299, 1433 (2014). http://dx.doi.org/10.1007/s10967-013-2895-y.
https://doi.org/10.1007/s10967-013-2895-y
 
35. M.Draye, A.Favre-Reguillon, D.Wruck et al., Sep. Sci. Technol., 36, 899 (2001). http://dx.doi.org/10.1081/SS-100103627.
https://doi.org/10.1081/SS-100103627
 
36. A.F.Seliman, J. Radioanal. Nucl. Chem., 292, 729 (2012). http://dx.doi.org/10.1007/ s10967-011-1478-z .
https://doi.org/10.1007/s10967-011-1478-z
 
37. L.Fuks, A.Oszczak, J.Dudek et al., Int. J. Environ. Sci. Technol. (Tehran), 13, 2339 (2016). http://dx.doi.org/10.1007/s13762-016-1067-3.
https://doi.org/10.1007/s13762-016-1067-3
 
38. L.Fuks, I.Herdzik-Koniecko, H.Polkowska-Motrenko, A.Oszczak, Int. J. Environ. Sci. Technol. (Tehran), 15, 2657 (2018). https://doi.org/10.1007/s13762-018-1650-x.
https://doi.org/10.1007/s13762-018-1650-x
 
39. C.Banerjee, N.Dudwadkar, S.C.Tripathi et al., J. Hazard. Mater., 280, 63 (2014). http://dx.doi.org/10.1016/j.jhazmat.2014.07.026.
https://doi.org/10.1016/j.jhazmat.2014.07.026
 
40. J.Krejzler, J.Narbutt, Nukleonika, 48, 171 (2003). http://www.nukleonika.pl/www/back/full/vol48_2003/v48n4p163f.pdf
 
41. J.Veliscek-Carolan, J. Hazard. Mater., 318, 266 (2016). http://dx.doi.org/10.1016/ j.jhazmat.2016.07.027.
https://doi.org/10.1016/j.jhazmat.2016.07.027
 
42. A.S.Kuzenkova, A.Yu.Romanchuk, A.L.Trigub et al., Carbon, 158, 291 (2020). https://doi.org/10.1016/j.carbon.2019.10.003.
https://doi.org/10.1016/j.carbon.2019.10.003
 
43. K.Dasthaiah, B.R.Selvan, A.S.Suneesh et al., J. Radioanal. Nucl. Chem., 313, 515 (2017). http://dx.doi.org/10.1007/s10967-017-5314-y .
https://doi.org/10.1007/s10967-017-5314-y
 
44. A.A.Naser, G.E.Sharaf El-deen, A.A.Bhran et al., J. Ind. Eng. Chem., 32, 264 (2015). http://dx.doi.org/10.1016/j.jiec.2015.08.024.
https://doi.org/10.1016/j.jiec.2015.08.024
 
45. S.V.Khimchenko, T.A.Blank, K.N.Belikov et al., Funct. Mater., 24, 706 (2017). http://dx.doi.org/10.15407/fm24.04.706.
https://doi.org/10.15407/fm24.04.706
 
46. D.R.Frohlich, U.Kaplan, J. Radioanal. Nucl. Chem., 318, 1785 (2018). https://doi.org/10.1007/s10967-018-6310-6.
https://doi.org/10.1007/s10967-018-6310-6
 
47. M.Ho Lee, E.C.Jung, K.Song et al., J. Radioanal. Nucl. Chem., 287, 639 (2011). https://doi.org/10.1007/s10967-010-0899-4 .
https://doi.org/10.1007/s10967-010-0899-4
 
48. Y.Sun, D.Pan, X.Wei et al., Environ. Pollut., 266, 115189 (2020). https://doi.org/10.1016/ j.envpol.2020.115189 .
https://doi.org/10.1016/j.envpol.2020.115189
 
49. P.K.Verma, P.K.Mohapatra, RSC Adv., 6, 84464 (2016). https://doi.org/10.1039/ C6RA17984C .
https://doi.org/10.1039/C6RA17984C
 
50. A.Gladysz-Plaska, A.Oszczak, L.Fuks, M.Majdan, Pol. J. Environ. Stud., 25, 2401 (2016). https://doi.org/10.15244/pjoes/62638 .
https://doi.org/10.15244/pjoes/62638
 
51. N.Kozai, Sh.Yamasaki, T.Ohnuki, J. Radioanal. Nucl. Chem., 299, 1571 (2014). https://doi.org/10.1007/s10967-013-2799-x.
https://doi.org/10.1007/s10967-013-2799-x
 
52. P.K.Verma, P.N.Pathak, P.K.Mohapatra et al., Environ. Sci. Process. Impacts, 16, 904 (2014) https://doi.org/10.1039/C3EM00563A.
https://doi.org/10.1039/c3em00563a
 
53. T.M.Dittrich, H.Boukhalfa, S.D.Ware, P.W.Reimus, J. Environ. Radioactivity, 148, 170 (2015). http://dx.doi.org/10.1016/j.jenvrad.2015.07.001.
https://doi.org/10.1016/j.jenvrad.2015.07.001
 
54. T.Yu, Z.Xu, J.Ye, J. Radioanal. Nucl. Chem., 319, 749 (2019). https://doi.org/10.1007/ s10967-018-6386-z .
https://doi.org/10.1007/s10967-018-6386-z
 
55. L.Fuks, I.Herdzik-Koniecko, Appl. Clay Sci., 161, 139 (2018). https://doi.org/10.1016/j.clay.2018.04.010 .
https://doi.org/10.1016/j.clay.2018.04.010
 
56. G.Lujaniene, P.Benes, K.Stamberg, T.Sciglo, J. Environ. Radioactivity, 108, 41 (2012). https://doi.org/0.1016/j.jenvrad.2011.07.012.
https://doi.org/10.1016/j.jenvrad.2011.07.012
 
57. R.Kautenburger, K.Brix, C.Hein, Appl. Geochemistry, 109, 104404 (2019). https:// doi.org/10.1016/j.apgeochem.2019.104404 .
https://doi.org/10.1016/j.apgeochem.2019.104404
 
58. L.Fuks, I.Herdzik-Koniecko, L.Maskalchuk, T.Leontieva, J. Radioanal. Nucl. Chem., 320, 87 (2017). https://doi.org/10.1016/10.1007/ s13762-017-1597-3 .
 
59. D.Garcia, J.Lutzenkirchen, V.Petrov et al., Colloids Surf. A Physicochem. Eng. Asp., 578, 123610 (2019). https://doi.org/10.1016/j.colsurfa.2019.123610 .
https://doi.org/10.1016/j.colsurfa.2019.123610
 
60. W.Du, X.Liu, L.Tan, J. Radioanal. Nucl. Chem., 292, 1173 (2012). https://doi.org/ 10.1007/s10967-011-1573-1 .
https://doi.org/10.1007/s10967-011-1573-1
 
61. A.M.Simmons, L.A.Neymark, Conditions and Processes Affecting Radionuclide Tansport, in: Stuckless, J.S., ed., Hydrology and Geochemistry of Yucca Mountain and Vicinity, Southern Nevada and California: Geological Society of America, Memoir 209, 277 (2012). https://doi.org/10.1130/2012.1209(06) .
https://doi.org/10.1130/2012.1209(06)
 
62. F.Noli, G.Buema, P.Misaelides, M.Harja, J. Radioanal. Nucl. Chem., 303, 2303 (2015). https://doi.org/10.1007/s10967-014-3762-1 .
https://doi.org/10.1007/s10967-014-3762-1
 
63. N.N.Popova, G.L.Bykov, G.A.Petukhova et al., Prot. Met. Phys. Chem. Surf., 49, 304 (2013). https://doi.org/10.1134/S2070205113030131 .
https://doi.org/10.1134/S2070205113030131
 
64. A.Yu.Romanchuk, A.S.Slesarev, S.N.Kalmykov et al., Phys. Chem. Chem. Phys., 15, 2321 (2013). https://doi.org/10.1039/c2cp44593j.
https://doi.org/10.1039/c2cp44593j
 
65. S.Yu, X.Wang, X.Tan, X.Wang, Inorg. Chem. Front., 2, 593 (2015). https://doi.org/ 10.1039/c4qi00221k .
https://doi.org/10.1039/C4QI00221K
 
66. G.Lujaniene, S.Semcuk, I.Kulakauskaite et al., J. Radioanal. Nucl. Chem., 307, 2267 (2016). https://doi.org/10.1007/s10967-015-4461-2.
https://doi.org/10.1007/s10967-015-4461-2
 
67. P.Kumar, A.Sengupta, A.K.Singha Deb, Sk.Musharaf Ali, ChemistrySelect, 2, 975 (2017). https://doi.org/10.1002/slct.201601550.
https://doi.org/10.1002/slct.201601550
 
68. A.K.Singh Deb, S.Pahan, K.Dasgupta et al., J. Hazard. Mater., 345, 63 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.003.
https://doi.org/10.1016/j.jhazmat.2017.11.003
 
69. M.J.O'Hara, J.C.Carter, C.L.Warner et al., RSC Adv., 6, 105239 (2016). https://doi.org/10.1039/c6ra22262e .
https://doi.org/10.1039/C6RA22262E
 
70. N.Morelova, N.Finck, J.Lutzenkirchen et al., J. Colloid Interface Sci., 561, 708 (2020). https://doi.org/10.1016/j.jcis.2019.11.047.
https://doi.org/10.1016/j.jcis.2019.11.047
 
71. V.G.Petrov, Y.D.Perfiliev, S.K.Dedushenko et al., J. Radioanal. Nucl. Chem., 310, 347 (2016). https://doi.org/10.1007/s10967-016-4867-5.
https://doi.org/10.1007/s10967-016-4867-5
 
72. D.Sofronov, A.Krasnopyorova, N.Efimova et al., Process Saf. Environ. Prot., 125, 157 (2019). https://doi.org/10.1016/j.psep.2019.03.013 .
https://doi.org/10.1016/j.psep.2019.03.013
 
73. K.Jayachandran, R.D.Bhanushali, I.C.Pius, S.K.Mukerjee, J. Radioanal. Nucl. Chem., 278, 103 (2008). https://doi.org/10.1007/s10967-007-7210-3.
https://doi.org/10.1007/s10967-007-7210-3
 
74. A.Ansari, P.K.Mohapatra, V.K.Manchanda, J. Hazard. Mater., 161, 1323 (2009). https:// doi.org/10.1016/j.jhazmat.2008.04.093.
https://doi.org/10.1016/j.jhazmat.2008.04.093
 
75. I.M.Zviagin, S.V.Khimchenko, T.A.Blank et al., Funct. Mater., 25, 619 (2018). https://doi.org/10.15407/fm25.03.619 .
https://doi.org/10.15407/fm25.03.619
 
76. S.Y.Sayenko, Y.O.Svitlychnyi, V.A.Shkuropatenko et al., Funct. Mater., 27, 39 (2020). https://doi.org/10.15407/fm27.01.39.
https://doi.org/10.15407/fm27.01.39
 
77. P.S.Dhami, R.Kannan, P.W.Naik et al., Biotechnol. Lett., 24, 885 (2002). https://doi.org/10.1023/A:1015533129642.
https://doi.org/10.1023/A:1015533129642
 
78. P.Kishor, A.Sengupta, V.C.Adya, N.A.Salvi, J. Radioanal. Nucl. Chem., 312, 395 (2017). https://doi.org/10.1007/s10967-017-5214-1.
https://doi.org/10.1007/s10967-017-5214-1
 
79. A.Oszczak, L.Fuks, Nukleonika, 60, 927 (2015). https://doi.org/10.1515/nuka-2015- 0155.
https://doi.org/10.1515/nuka-2015-0155
 
80. E.S.Kazak, E.G.Kalitina, N.A.Kharitonova et al., Moscow Univ. Geol. Bull., 73, 287 (2018). https://doi.org/10.1007/s10450-019-00133-2.
https://doi.org/10.1007/s10450-019-00133-2
 
81. L.Gotzke, G.Schaper, J.Marz et at., Coord. Chem. Rev., 386, 267 (2019). https://doi.org/10.1016/j.ccr.2019.01.006.
https://doi.org/10.1016/j.ccr.2019.01.006
 
82. L.A.Attia, M.A.Youssef, O.A.Abdel Moamen, Sep. Sci. Technol., 56, 217 (2019). https://doi.org/10.1080/01496395.2019.1708111.
https://doi.org/10.1080/01496395.2019.1708111
 
83. R.R.L.Vidal, J.S.Moraes, Int. J. Environ. Sci. Technol., 16, 1741 (2019). https://doi.org/ 10.1007/s13762-018-2061-8.
https://doi.org/10.1007/s13762-018-2061-8
 
 
 

Current number: