Funct. Mater. 2022; 29 (1): 52-61.

doi:https://doi.org/10.15407/fm29.01.52

Layer, interjacent and island polymorphous crystallization of amorphous Ta2O5 films

A.G.Bagmut

NTU "KhPI", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

Electron-beam crystallization of amorphous Ta2O5 films was studied by in situ transmission electron microscopy with video recording of structural changes. Structural changes and kinetic curves demonstrating the dependence of the density of crystals and the fraction of the crystalline phase on time were studied using frame-by-frame video analysis. The formation of a crystalline film occurred polymorphically at a constant crystal growth rate, but in different crystallization modes, which is associated with the local inhomogeneity of the amorphous film. In the mode of layer-by-layer polymorphic crystallization, a single crystal was formed in the region under study. A quadratic dependence of the fraction of the crystalline phase on time was observed, and the relative length was ~ 3700. In the mode of island polymorphous crystallization, a polycrystalline film was formed in the region under study. The time dependence of the density of crystallization centers was described by a curve with saturation; the time dependence of the fraction of the crystalline phase had an exponential character, described by the Johnson-Male-Avrami-Kolmogorov equation. The relative length was ~ 400. The intermittent nature of crystallization is characterized by the nucleation and growth of several (3-4) misoriented crystals. The time dependence of the fraction of the crystalline phase was approximated by the polynomial of the third degree. The relative length was ~ 1800.

Keywords: 
Electron-beam crystallization, amorphous films, Ta<sub>2</sub>O<sub>5</sub>.
References: 
1. Y.Yang, H.-H.Nahm, O.Sugino, T.Ohno, AIP Advances, 3, 042101 (2013).
https://doi.org/10.1063/1.4800899
 
2. E.Atanassova, A.Paskaleva, Microelectron. Reliab. 47, 913 (2007).
https://doi.org/10.1016/j.microrel.2006.06.006
 
3. C.Chaneliere, J.L.Autran, R.A.B.Devine, B.Balland, Mater. Sci. Eng. R. Rep., 22, 269 (1998).
https://doi.org/10.1016/S0927-796X(97)00023-5
 
4. C.Chaneliere, S.Four, J.L.Autran et al., J. Appl. Phys., 83, 4823 (1998).
https://doi.org/10.1063/1.367277
 
5. A.Krishnaprasanth, M.Seetha, AIP Advances, 8, 055017-1 (2018).
https://doi.org/10.1063/1.5019423
 
6. T.Dimitrova, U,K.Arshak, E.Atanassova, Thin Solid Films, 381, 31 (2001).
https://doi.org/10.1016/S0040-6090(00)01569-8
 
7. S.Shibata, Thin Solid Films, 277, 1 (1996).
https://doi.org/10.1016/0040-6090(95)08234-4
 
8. J.Spyridelis, P.Delavignette, S.Amelinckx, Phys. Stat. Sol., 19, 683 (1967).
https://doi.org/10.1002/pssb.19670190220
 
9. V.M.Kosevich, A.A.Sokol, Yu.P.Dyakonenko, Crystallography, 28, 483 (1983).
 
10. K.-H.Min, R.Sinclair, I.-S.Park et al., Phil. Mag., 85, 2049 (2005).
https://doi.org/10.1080/14786430500036546
 
11. A.G.Bagmut, Func. Mater., 26, 6 (2019).
https://doi.org/10.15407/fm26.01.6
 
12. U.Koster, U.Herold, Crystallization of Metallic Glasses, in: H.-J. Guntherodt, H.Beck (Eds.), Glassy Metals i Ionic Structure, Electronic Transport, and Crystallization, Springer, Berlin Heidelberg, New York (1981), p.225.
https://doi.org/10.1007/3540104402_10
 
13. A.G.Bagmut, Phys. Solid State, 59, 1225 (2017).
https://doi.org/10.1134/S1063783417060038
 
14. A.G.Bagmut, I.A.Bagmut, J. Non-Cryst. Solids, 547, 120286 (2020).
https://doi.org/10.1016/j.jnoncrysol.2020.120286
 
15. A.G.Bagmut, J. Cryst. Growth., 492, 92 (2018).
https://doi.org/10.1016/j.jcrysgro.2018.03.038
 
16. S.M.Zharkov, L.I.Kveglis, Phys. Solid State, 46, 969 (2004).
https://doi.org/10.1134/1.1744977
 
17. JCPDS Powder Diffraction File, International Centre for Diffraction Data, Swarthmore, PA, (1996).
 
18. A.N.Kolmogorov, Izv. Acad. Sci. USSR, Ser. Math. 1, 355 (1937).
 
19. V.Z.Belen'kii, Geometric-Probabilistic Models of Crystallization: A Phenomenological Approach, Nauka, Moscow, 1980 (in Russian).
 
20. V.Yu.Kolosov, A.R.Tholen, Acta Mater. 48, 1829 (2000).
https://doi.org/10.1016/S1359-6454(99)00471-1
 
21. G.Ruitenberg, A.K.Petford-Long, R.C.Doole, J. Appl. Phys., 2, 3116 (???).
 
22. N.Ohshima, J. Appl. Phys., 79, 8357 (1996).
https://doi.org/10.1063/1.362548
 
23. L.S.Palatnik, A.A.Nechitailo, A.A.Kozma, Dokl. Akad. Nauk SSSR, 261, 1134 (1981).
 
24. A.I.Zubkov, M.B.Guseva, V.G.Babaev, Izv. Acad. Sci. USSR, Ser. Phys., 44, 1276 (1980).
 
25. A.G.Bagmut, Func. Mater., 28, 444 (2021).

Current number: