Funct. Mater. 2022; 29 (1): 62-71.

doi:https://doi.org/10.15407/fm29.01.62

Technically useful properties of copper-zinc ferrites

V.V.Datsenko1, E.B.Khobotova1, O.V.Vankevich2, S.M.Tolmachov1

1Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine 2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61002 Kharkiv, Ukraine

Abstract: 

Composite materials containing copper-zinc ferrites (FC) were obtained by coprecipitation from spent technological sulfate copper-zinc solutions. The ratio of copper, zinc and iron in ferrites has been determined. Zinc is more fully included in ternary ferrites than copper. It has been proven that the surface groups of ferrites are O-H in adsorbed associates and end groups of water; bending vibrations of the Zn-O-H, Fe-O-H and O-H groups have been recorded. The specific saturation magnetization of ferrite particles varies in the range of 6-46 emu/g decreasing with an increase in the proportion of nonmagnetic Zn and Cu. There is no residual magnetization in ferrites. The synthesized ferrites belong to superparamagnets with a particle size of 7-14 nm. FCs are active in the processes of purification of the aqueous phase from the dye methyl violet (MV). For most FCs, purification is effective when the mass of ferrite exceeds the mass of MV by a factor of 1000, when high purification efficiency and the degree of MV conversion per unit mass of FC are simultaneously achieved. Within 5 hours the solutions can be purified from MV by 99 %. Simultaneous photocatalysis and adsorption is possible. The photocatalytic activity of FCs manifests itself at the beginning of the process, with a further decrease when the FC surface is screened by the MV layer.

Keywords: 
copper-zinc ferrites, composite materials, mineral composition, superparamagnetism, surface functional groups, sorption and photocatalytic properties.
References: 
1. O.Karaagac, B.B.Yildiz, H.Kockar, J. Magn. Magn. Mater., 473, 262 (2019). https://doi.org/10.1016/j.jmmm.2018.10.063
https://doi.org/10.1016/j.jmmm.2018.10.063
 
2. A.Farheen, R.Singh, IOP Conf. Ser.:Mater. Sci. Eng., 577, 012057 (2019). https://doi.org/10.1088/1757-899X/577/1/012057
https://doi.org/10.1088/1757-899X/577/1/012057
 
3. S.Yu, H.Zhang, S.Zhang et al., Front. Chem., 27, 2021 (2021). https://doi.org/10.3389/fchem.2021.651053
https://doi.org/10.3389/fchem.2021.651053
 
4. T.A.Dontsova, S.Nahirniak, I.M.Astrelin, J. Nanomater., 2019, 5942194 (2019). https://doi.org/10.1155/2019/5942194
https://doi.org/10.1155/2019/5942194
 
5. O.Makarchuk, T.Dontsova, A.Perekos et al., J. Nanomater., 2017, 8570598 (2017). https://doi.org/10.1155/2017/8579598
https://doi.org/10.1155/2017/8579598
 
6. L.Phor, S.Chahal, V.J.Kumar, Advan. Ceram., 9, 576 (2020). https://doi.org/10.1007/ s40145-020-0396-3
https://doi.org/10.1007/s40145-020-0396-3
 
7. A.Kmita, D.Lachowicz, J.Zukrowski et al., Mater., 12, 1048 (2019). https://doi.org/10.3390/ma12071048
https://doi.org/10.3390/ma12071048
 
8. S.G.Dahotre, L.N.Singh, Adv. Appl. Sci. Res., 5, 146 (2014).
 
9. J.P.Singh, G.Dixit, R.C.Srivastava et al., Bull. Mater. Sci., 36, 751 (2013).
https://doi.org/10.1007/s12034-013-0528-2
 
10. K.Tanaka, M.Katsuta, S.Nakashima, K.Fujita, J. Jap. Soc. Powd. Powd. Metallurgy, 52, 221 (2005). https://doi.org/10.2497/jjspm.52.221
https://doi.org/10.2497/jjspm.52.221
 
11. JCPDS PDF-1 File [Electronic resource]. ICDD: The Intern. Centre Diffr. Data, PA, USA (1994).
 
12. J.Rodriguez-Carvajal, T.Roisnel, FullProf.98 and WinPLOTR: New Windows 95/NT Applications for Diffraction. Com. Powder Diffr., Intern. Union Crystallogr., Newsletter, No.20 (1998).
 
13. T.L.Rakitskaya, A.S.Truba, A.A.Annan, Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 29 (2016).
 
14. Sh.N.Alieva, A.M.Kerimova, R.B.Abdullaev, T.R.Mehdiyev, Phys. Sol. State Phys., 59, 528 (2017). https://doi.org/10.1134/ S1063783417030027.
 
15. R.S.Yadav, I.Kuritka, J.Vilcakova et al., J. Mater. Sci. Mater. Electron., 28, 6245 (2017). https://doi.org/10.1007/s10854-016-6305-4
https://doi.org/10.1007/s10854-016-6305-4
 
16. R.S.Yadav, J.Havlica, J.Masilko, L.Kalina, J. Supercond. Nov. Magn., 29, 759 (2016). https://doi.org/10.1007/s10948-015-3339-4
https://doi.org/10.1007/s10948-015-3339-4
 
17. V.I.Simagina, O.V.Komova, G.V.Odegova et al., J. Appl. Chem., 92, 20 (2019). https://doi.org/10.1134/S1070427219010038.
https://doi.org/10.1134/S1070427219010038
 
18. K.Nakomoto, IR and Raman Spectra of Inorganic and Coordination Compounds, ?????????
 
19. NIST Chemistry WebBook, SRD 69/Nation. Inst. Stand. Techn. U.S. Depart. Com. https://webbook.nist.gov/cgi/cbook.cgi?ID=B6000542&Units=SI&Mask=82
 
20. L.M.Plyasova, V.I.Zaikovsky, G.N.Kustova et al., J. Struct. Chem., 56, 642 (2015). https://doi.org/10.1134/S0022476615040058
https://doi.org/10.1134/S0022476615040058
 
21. M.Ma, Z.Yu, W.Yu et al., Coll. Surf.:Physicochem. Eng. Aspec., 212, 219 (2003). https://doi.org/10.1016/S0927-7757(02)00305-9
https://doi.org/10.1016/S0927-7757(02)00305-9
 
22. S.V.Vonsovsky, Magnetism. Magnetic Poperties of Dia-, Para-, Ferro-, Antiferro- and Ferrimagnets, Nauka, Moscow (1971) [in Russian].
 
23. I.P.Suzdalev, Electrical and Magnetic Transitions in Nanoclusters and Nanostructures, Krasand, Moscow (2012) [in Russian].
 
 

Current number: