Funct. Mater. 2022; 29 (1): 72-80.

doi:https://doi.org/10.15407/fm29.01.72

Microwave absorption in carbon fibers Ural N-24 and their composites based on polyamide Phenilone C-2

A.A. Konchits1, B.D. Shanina1, S.V. Krasnovyd1, A.I. Burya2, A.-M. V. Tomina2, Ye.A. Yeriomina2

1V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 03028, 41 Nauki av., Kyiv, Ukraine
2Dniprovsk State Technical University, 51918, 2 Dniprobudivska str., Kamyanske, Ukraine

Abstract: 

Properties of the resonance (EPR, FMR) and non-resonance microwave absorption (NMA) in carbon fibers (CFs) Ural N-24 and powder samples of Phenilone C-2 /CFs composites were studied using a 3-cm EPR spectrometer "Radiopan" SE/X-2544. It was shown that the EPR signals of carbon fibers are mainly due to free electrons. They form response as of symmetric (Lorentz shape) or asymmetric (Dyson shape) EPR line, depending on the fulfillment of the conditions: d << δ or d >> δ, where d is the thickness of CFs threads or bundles; δ is the skin layer thickness for a given wave frequency. The effect of a strong NMA in CFs and PhC-2 /CFs composites due to the non-resonant absorption of the microwaves by free carriers was found. It is shown that the magnitude of the NMA effect can be controlled by changing both the concentration of CFs in the composite and the density of the powder. The latter determines electrical contact between the individual particles. It is established the fact of the formation of strong ferromagnetic resonance (FMR) signals in composites. The magnitude of the FMR signal increases non-linearly with increasing of CFs concentration. To explain this effect, a model is proposed taking into account the role of the technological process of magnetic mixing of the powder accompanied by the friction of strong carbon fibers with ferromagnetic additives. The FM material's micro- and nanoparticles are split off in this process and give rise to the ferromagnetic or superparamagnetic properties of the prepared composites.

Keywords: 
carbon fibers, polyamide-based composites, electron paramagnetic resonance, nonresonant microwave absorption
References: 
1. Burya A.I. Polymer composites - a new chapter in modern materials science. Composite materials, V.10 (2016) ь2, P. 3-10 (in Russian).
 
2. Bitkin V. E., Jidkova O. G., KomarovV. A. The choice of materials for the manufacture of dimensionally stable load-bearing structures. Bulletin of Samara University. Aerospace Engineering, Technology and Engineering (2018), V. 17, ь 1, P. 100-117. 
https://doi.org/10.18287/2541-7533-2018-17-1-100-117
 
3. Burya O. I., Yeriomina Ye. A., Lysenko O. B., Konchits A. A., Morozov A. F. (2019). Polymer composites based on thermoplastic binders (Serednyak T. K. Press, Ukraine) (in Ukrainian).
 
4. Silva M. R., Pereira A. M., Alves N., Mateus G., Mateus A., Malca, C. (2019). Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers, J. Manuf. Mater. Processing, 2, pp. 35-51.
https://doi.org/10.3390/jmmp3020035
 
5. Ruland W. (1990). Carbon Fibers. Advanced Materials, 2, (11), pp. 528-536.
https://doi.org/10.1002/adma.19900021104
 
6. Xiaosong Huang, Fabrication and Properties of Carbon Fibers. Materials 2009, 2, 2369-2403; 
https://doi.org/10.3390/ma2042369
 
7. Dhawan S. K., Ohlan A., Singh. K. Designing of nanocomposites of conducting polymers for EMI shielding. Ch. 19 in the book: Advances in nanocomposites synthesis, characterization, and industrial applications. Ed.: B.S.R. Reddy, P. 429-482. InTech, Croatia, 2011. ISBN 978-953-307-165-7.
 
8. Lecocq H., Garois N., Lhost O., Girard P-F., Cassagnau Ph., Serghei A. Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: properties and modeling. Composites, Part B, 189 (2020) 107866, 
https://doi.org/10.1016/j.compositesb.2020.107866
 
9. Feher G., Kip A. F. (1955). Electron Spin Resonance Absorption in Metals. I. Experimental, Phys. Rev.98, ь2, pp. 337-348.
https://doi.org/10.1103/PhysRev.98.337
 
10. Dyson F. J. (1955). Electron Spin Resonance Absorption in Metals. II. Theory of Electron Diffusion and the Skin Effect, Phys. Rev.98, ь2, pp. 349-359.
https://doi.org/10.1103/PhysRev.98.349
 
11. Pifer J. H., Magno R. (1971). Conduction-Electron Spin Resonance in a Lithium Film, Phys. Rev. B, 3, pp. 663-673.
https://doi.org/10.1103/PhysRevB.3.663
 
12. Gavriljuk V. G., Efimenko S. P., Smuk Y. E., Smuk S. U., Shanina B. D., Baran N. P., Maksimenko V. M. (1993). Electron-spin-resonance study of electron properties in nitrogen and carbon austenite, Phys. Rev. B. 48, pp. 3224-3231.
https://doi.org/10.1103/PhysRevB.48.3224
 
13. Burya A., Kuznetsova O., Konchits A., Redchuk A. The influence of nanocluster carbon materials on the structure and properties of polyamide nanocomposites. Materials Science Forum, Vol. 674 (2011), pp. 189-193.
https://doi.org/10.4028/www.scientific.net/MSF.674.189
 
14. Konchits A.A., Krasnovyd S. V., Burya A. I., Dobrova L. V. Paramagnetic resonance in powdered graphite, composite graphite/paraffin, and thermally expanded graphite. Composite materials (2016), V.10, ь1, P. 68-74 (in Russian).
 
15. Jones J. B., Singer L. S. Electron spin resonance and the structure of carbon fibers. Carbon (1982), V. 20, N 5, pp. 379-385.
https://doi.org/10.1016/0008-6223(82)90036-7
 
16. Bright A. A., Singer L. S. The electronic and structural characteristics of carbon fibers from mesophase pitch. Carbon (1979), V. 17, pp. 59-69.
https://doi.org/10.1016/0008-6223(79)90071-X
 
17. Xiaosong Huang. Fabrication and Properties of Carbon Fibers. Materials (2009), 2, pp. 2369-2403; doi:10.3390/ma2042369
https://doi.org/10.3390/ma2042369
 
18. Ruland W. Carbon Fibers. Advanced Materials (1990), V. 2, No. 11, pp. 528-536.
https://doi.org/10.1002/adma.19900021104
 
19. Robson D., Assabghy F. Y. I., Ingram D. J. E. An electron spin resonance study of carbon fibres based on polyacrylonitrile. J. Phys. D: Appl. Phys., (1971), Vol. 4. pp. 1426-1438.
https://doi.org/10.1088/0022-3727/4/9/324
 
20. Kovarskii A. L., Kasparov V. V., Krivandin A. V., Shatalova O. V., Korokhin R. A., Kuperman A. M. EPR Spectroscopic and X-Ray Diffraction Studies of Carbon Fibers with Different Mechanical Properties. Russian Journal of Physical Chemistry B, (2017), V. 11, No. 2, pp. 233-241.
https://doi.org/10.1134/S1990793117020208
 
21. Lijewski S., Wencka M., Hoffmann S. K., Kempinski M., Kempinski W., Sliwinska-Bartkowiak M. Electron spin relaxation and quantum localization in carbon nanoparticle: Electron spin echo studies. Phys. Rev. B, V. 77 (2008), 014304 (1-8).
https://doi.org/10.1103/PhysRevB.77.014304
 
22. Dresselhaus M. S., Dresselhaus G., Sugihara K., Spain L., Goldberg H. A. Graphite Fibers and Filaments. Springer-Verlag, 1988, 382 p.
https://doi.org/10.1007/978-3-642-83379-3
 
23. Xin Qian, Xuefei Wang, Junjun Zhong, Jianhai Zhi, Fangfang Heng, Yonggang Zhang, Shulin Song. Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. J. Raman Spectrosc. (2019), V.50, iss. 5, pp. 1 - 9.
https://doi.org/10.1002/jrs.5569
 
24. Okuda H., Young R. J., Wolverson D., Tanaka F., Yamamoto Go., Okabe T. Investigating nanostructures in carbon ?bres using Raman spectroscopy. Carbon (2018), V. 130, pp. 178-184.
https://doi.org/10.1016/j.carbon.2017.12.108
 
25. Singer L. S., Wagoner G. Electron Spin Resonance in Polycrystalline Graphite. J. Chem. Phys. (1962), V. 37, N 8, pp. 1812-1817; DOI: 10.1063/1.1733373
https://doi.org/10.1063/1.1733373
 
26. Heremans J. Electrical conductivity of vapor-grown carbon fibers. Carbon (1985), V. 23, ь 4, pp. 431-436.
https://doi.org/10.1016/0008-6223(85)90037-5
 
27. Mrozowski S. Electron spin resonance in neutron-irradiated and in doped polycrystalline graphite - Part I. Carbon (1965), V. 3, pp. 305-320.
https://doi.org/10.1016/0008-6223(65)90065-5
 
28. Marshik B, Apple T. Motional narrowing of the conduction ESR of vapour-grown carbon fibres. J. Phys. D: Appl. Phys. 22 (1989) pp. 676-681.
https://doi.org/10.1088/0022-3727/22/5/016
 
29. Marshik B, Meyer D., Apple T. Electron-spin-resonance studies of vapor-grown carbon fibers. J. Appl. Phys. (1987), 62, pp. 3947-3952; 
https://doi.org/10.1063/1.339192
 
30. Marshik B, Apple T. Conduction ESR of Vapor Grown Carbon Fibers. Colloids and Surfaces (1990), 46, pp. 225-233.
https://doi.org/10.1016/0166-6622(90)80025-Y
 
31. Konchits Ђ. A., Shanina B. D., Krasnovyd S. V., Yukhymchuk V. O., Hreshchuk O. M, Valakh M. Ya., Skoryk M. A., Kulinich S. A., Belyaev A. E., Iarmolenko D. A. Structure and electronic properties of biomorphic carbon matrices and SiC ceramics prepared on their basis. J. Appl. Phys. (2018) V. 124, 135703(1-10).
https://doi.org/10.1063/1.5042844
 
32. Konchits A. A., Shanina B. D., Valakh M. Ya., Yanchuk I. B., Yukhymchuk V. O., Yefanov A. V., Krasnovyd S. V., Skoryk M. A. Spectroscopical study of natural nanostructured carbonaceous material shungite. Functional materials, 21, 3, 260 (2014).
https://doi.org/10.15407/fm21.03.260
 
33. Robson D., Assabghy F. Y. I., Cooper E. G., Ingram D. J. E. Electronic properties of high-temperature carbon fibres and their correlations. J. Phys. D: Appl. Phys., (1973) V. 6, pp. 1822-1834.
https://doi.org/10.1088/0022-3727/6/15/309
 
34. Cataldo F., Putz M. V., Ursini O., Angelini G., Garcia-Hernandez D. A., Manchado A. A new route to graphene starting from heavily ozonized fullerenes: Part 3 - an electron spin resonance study. Fullerenes, Nanotubes and Carbon Nanostructures (2016) 24:3, 195-201, 
https://doi.org/10.1080/1536383X.2015.1113524
 
35. McClure J. W., Hickman B. B. Analysis of magnetic susceptibility of carbon fibers. Carbon (1982) V. 20, ь. 5, pp. 373-378.
https://doi.org/10.1016/0008-6223(82)90035-5
 
36. Semenenko B., Esquinazi P. D. Diamagnetism of Bulk Graphite Revised. Magnetochemistry (2018), 4, 52; 
https://doi.org/10.3390/magnetochemistry4040052
 

Current number: