Funct. Mater. 2022; 29 (1): 81-92.

doi:https://doi.org/10.15407/fm29.01.81

Influence of twist extrusion and thermal action on texturing and properties of titanium

V.V.Usov1, N.M.Shkatuliak1, Ye.S.Savchuk1, N.I.Rybak1, D.V.Pavlenko2, D.V.Tkach2, O.M.Khavkina2

1South Ukrainian National Pedagogical University named after K.Usyinsky, 26 Staroportofrankovskaya Str., 65020 Odesa, Ukraine
2Zaporozhye Polytechnic National University, 64 Zhukovskogo Str, 69063 Zaporozhye, Ukraine

Abstract: 

Changes in the elastic modulus, hardness, and ultimate strength of commercially pure titanium (Titanium Grade 2) were studied depending on the direction of severe plastic deformation and subsequent heat treatment of the sample. Severe plastic deformation (SPD) was performed by twist extrusion. Heat treatment was carried out by annealing in the temperature range of 200-400°C with an interval of 50°C. The use of SPD led to the grain refinement to an average size of 200...500 nm from 150...300 μm in the initial state. The change in physical and mechanical properties was associated with the development of a crystallographic texture represented by the Kearns texture parameters, which show the degree of coincidence of the c-axes of the crystalline hexagonal cell of grains with a given geometric direction in a polycrystalline material. The texture of the samples was investigated using the X-ray method by constructing reverse pole figures. It has been shown that the anisotropy of th e elastic modulus after SPD was about 14.0 %. With an increase in the annealing temperature, the anisotropy decreased. After annealing at 250°C, the Kearns texture parameters had the closest values corresponding to the tex ture less state. With a further increase in the annealing temperature, the anisotropy of the elastic modulus increased; after annealing at 400°C its value was 16.42 %. Based on the empirical ratios of hardness and strength of single crystals in titanium of technical purity, the values of the ultimate strength and yield strength of a titanium single crystal along its hexagonal axis and in the direction perpendicular to it were found. The anisotropy coefficients of the ultimate strength and yield streng th of titanium after SPD were determined. The regularity of their change in connection with the temperature of the subsequent annealing was established.

Keywords: 
titanium, severe plastic deformation, twist extrusion, heat treatment, crystallographic texture, pole figure, anisotropy, elastic modulus, ultimate strength, hardness.
References: 
1. A.I.Khorev, Heat, Thermomechanical Treatment and Textural Hardening of Welded Titanium Alloys [in Russian]. https://www.viam.ru/public/files/2012/2012-206018.pdf
 
2. Y.Beygelzimer, R.Kulagin, Y.Estrin et al., Advanced Engineering Materials, 19, ??? (2017), https://www.researchgate.net/publication/316011012_Twist_Extrusion_as_a_ Potent_Tool_for_Obtaining_Advanced_Engineering_Materials_A_Review_Twist_ Extrusion_as_a_Potent_Tool_for_Obtaining
https://doi.org/10.1002/adem.201600873
 
3. V.V.Usov, N.M.Shkatulyak, P.A.Bryukhanov, Ya.E.Beigelzimer, Physics and Technology of High Pressures, 21, 103 (2011). http://dspace.nbuv.gov.ua/handle/123456789/69437
 
4. V.E.Olshanetskii, L.P.Stepanova, D.V.Tkach, D.V.Pavlenko, Met. Sci. Heat Treat,, 53, 618 (2012). https://doi.org/10.1007/s11041-012-9445-z
https://doi.org/10.1007/s11041-012-9445-z
 
5. Z.Zeng, Y.Zhang, S.Jonsson, Materials Science and Engineering: A, 513-514, 83 (2009). https://doi.org/10.1016/j.msea.2009.01.065
https://doi.org/10.1016/j.msea.2009.01.065
 
6. J.W.Won, C.H.Park, S.-G.Hong, C.S.Lee, Journal of Alloys and Compounds, 651, 245 (2015). https://doi.org/10.1016/j.jallcom.2015.08.075
https://doi.org/10.1016/j.jallcom.2015.08.075
 
7. G.G.Yapici, I.Karaman, H.J.Maier, Materials Science and Engineering: A, 434, 294 (2006). https://doi.org/10.1016/j.msea.2006.06.082
https://doi.org/10.1016/j.msea.2006.06.082
 
8. S.Nourbakhsh, T.D.O'Brien, Materials Science and Engineering, 100, 109 (1988). https://doi.org/10.1016/0025-5416(88)90245-5
https://doi.org/10.1016/0025-5416(88)90245-5
 
9. S.Suwas, B.Beausir, L.S.Toth et al., Acta Materialia, 59, 1121 (2011). https://doi.org/10.1016/j.actamat.2010.10.045
https://doi.org/10.1016/j.actamat.2010.10.045
 
10. Y.Beygelzimer, D.Orlov, A.Korshunov et al., Structures & Material Properties. Solid State Phenomena, 114, 69 (2006). https://hunch.net/~yan/papers/properties.of.twist.extrusion.pdf
https://doi.org/10.4028/www.scientific.net/SSP.114.69
 
11. Instrument X-ray Optics: Reflection Geometry. http://pd.chem.ucl.ac.uk/pdnn/inst1/optics1.htm
 
12. P.R.Morris, Journal of Applied Physics, 30, 595 (1959). https://doi.org/10.1063/1.1702413
https://doi.org/10.1063/1.1702413
 
13. Y.E.Beygelzimer, Simple Shear and "Turbulence" of Polycrystals. https://hunch.net/~yan/stati/spd.pdf
 
14. D.V.Pavlenko, Ya.E.Beygel'zimer, Powder Metallurgy and Metal Ceramics, 54, 517 (2016). https://link.springer.com/article/10.1007/s11106-016-9744-9
https://doi.org/10.1007/s11106-016-9744-9
 
15. K.K.Alaneme, E.A.Okotete, Journal of Science Advanced Materials and Devices, 4, 19 (2019). https://www.sciencedirect.com/science/article/pii/S2468217918302235#bib49
https://doi.org/10.1016/j.jsamd.2018.12.007
 
16. E.Nes, Acta Metallurgica et Materialia, 43, 2189 (1995)., https://doi.org/10.1016/0956-7151(94)00409-9
https://doi.org/10.1016/0956-7151(94)00409-9
 
17. Metals Grades: Titanium, Alloy and Grades [in Russian], http://metallicheckiy-portal.ru/marki_metallov/tit
 
18. J.Skiba, M.Kulczyk, W.Pachla et al., J. Nanomed. Nanotechnol., 9, ??? (2018) https://www.longdom.org/open-access/effect-of-severe-plastic-deformation- realized-by-hydrostatic-extrusion-onheat-transfer-in-cp-ti-grade-2-and-316l- austenitic-stainl-2157-7439-1000511.pdf
https://doi.org/10.4172/2157-7439.1000511
 
19. T.Kubina, J.Dlouhy, M.Kover et al., Materials and qTechnology, 49, 213 (2015). http://mit.imt.si/Revija/izvodi/mit152/kubina.pdf
 
20. J.Gubicza, N.H.Nam, L.Balogh et al., Journal of Alloys and Compounds, 378, 248 (2004). https://www.sciencedirect.com/science/article/abs/pii/S0925838804000945.
https://doi.org/10.1016/j.jallcom.2003.11.162
 
21. D.V.Pavlenko, D.V.Tkach, S.M.Danilova-Tret'yak, L.E.Evseeva, Journal of Engineering Physics and Thermophysics, 90, 685 (2017). doi:10.1007/s10891-017-1616-8
https://doi.org/10.1007/s10891-017-1616-8
 
22. J.J.Kearns, https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/WAPDTM472....
 
23. V.Grytsyna, D.Malykhin, T.Yurkova et al., East Eur. J. Phys., 3, 38 (2019). https://doi.org/10.26565/2312-4334-2019-3-05
https://doi.org/10.26565/2312-4334-2019-3-05
 
24. V.I.Vishnyakov, A.A.Babareko, S.A.Vladimirov, I.V.Egiz, Theory of Texture Formation in Metals and Alloys, Nauka, Moscow (1979) [in Russian]. https://kundoc.com/queue/pdf-physical-properties-of-crystals-their- representation-by-tensors-and-matrices-.html.
 
25. J.F.Nye, Physical Properties of Crystals their Representation. Their Representation by Tensors and Matrices, University Press, Oxford (2006). http://93.174.95.29/main/7258F1CE1EEE4CD628566F4EA21CDD58
 
26. K.W.Andrews, D.J.Dyson, S.R.Keown, Interpretation of Electron Diffraction Patterns, Springer, Boston, MA (1967). https://doi.org/10.1007/978-1-4899-6475-5_2.
https://doi.org/10.1007/978-1-4899-6475-5_2
 
27. B.S.Karpinos, D.V.Pavlenko, O.Ya.Kachan, Strength of Materials, 44, 100 (2012). https://link.springer.com/article/10.1007/s11223-012-9354-9
https://doi.org/10.1007/s11223-012-9354-9
 
28. J.S.Weaver, M.W.Priddy, D.L.McDowell, S.R.Kalidindi, Acta Materialia, 117, 23 (2016). http://dx.doi.org/10.1016/j.actamat.2016.06.053
https://doi.org/10.1016/j.actamat.2016.06.053
 
29. J.Gong, A.Wilkinson, Philosophical Magazine Letters, 90, 503 (2010). http://dx.doi.org/10.1080/09500831003772989.
https://doi.org/10.1080/09500831003772989
 
30. J.-M.Zhang, Y.Zhang, K.-W.Xu, V.Ji, Thin Solid Films, 515, 7020 (2007). URL: https://doi.org/10.1016/j.tsf.2007.01.045.
https://doi.org/10.1016/j.tsf.2007.01.045
 
31. D.Tromans, International Journal of Research and Reviews in Applied Sciences, 6, 462 (2011). https://www.arpapress.com/volumes/vol6issue4/ijrras_6_4_14.pdf
 
32. J.Lemaitre, R.Desmorat, M.Sauzay, Eur. J. Mech. A, 19, 187 (2000)._ https://www.sciencedirect.com/science/article/pii/S0997753800001613.
https://doi.org/10.1016/S0997-7538(00)00161-3
 
33. F.K.Mante, G.R.Baran, B.Lucas, Biomaterial, 20, 1051 (1999). https://www.sciencedirect.com/science/article/pii/S0142961298002579.
https://doi.org/10.1016/S0142-9612(98)00257-9
 
34. S.V.Lubenets, A.V.Rusakova, L.S.Fomenko, V.A.Moskalenko, Low Temp. Phys., 44, 73 (2018). https://doi.org/10.1063/1.5020901.
https://doi.org/10.1063/1.5020901
 
35. E.Merson, R.Brydson, A.Brown, Journal of Physics, Conference Series 126, 012020 (2008). https://iopscience.iop.org/article/10.1088/1742-6596/126/1/012020/pdf.
https://doi.org/10.1088/1742-6596/126/1/012020
 
36. C.Zambaldi, Y.Yang, T.R.Bieler, D.Raabe, J. Mater. Res., 27, 356 (2012). https://doi.org/10.1557/jmr.2011.334
https://doi.org/10.1557/jmr.2011.334
 
37. M.W.Priddy, D.L.McDowell, S.R.Kalidindi, Acta Materialia, 117, 23 (2016). http://dx.doi.org/10.1016/j.actamat.2016.06.053.
https://doi.org/10.1016/j.actamat.2016.06.053
 
38. P.Zhang, S.X Li., Z.F.Zhang, Materials Science and Engineering A, 529, 62 (2011). https://doi.org/10.1016/j.msea.2011.08.061.
https://doi.org/10.1016/j.msea.2011.08.061
 
39. F.Khodabakhshi, M.Haghshenas, H. Eskandari, B.Koohbor, Materials Science & Engineering A, 636, 331 (2015). http://dx.doi.org/10.1016/j.msea.2015.03.122
https://doi.org/10.1016/j.msea.2015.03.122
 
40. D.Pavlenko, Y.Dvirnyk, R.Przysowa, Advanced Materials and Technologies for Compressor Blades of Small Turbofan Engines. Aerospace, 8, 1 (2021). https://www.mdpi.com/2226-4310/8/1/1/htm
https://doi.org/10.3390/aerospace8010001

Current number: