Funct. Mater. 2022; 29 (1): 93-99.

doi:https://doi.org/10.15407/fm29.01.93

Electrochemical treatment of nickel-copper alloy in ionic liquid based on eutectic mixture of choline chloride and ethylene glycol as a way to increase electrocatalytic activity towards hydrogen evolution reaction

V.S.Protsenko1, T.E.Butyrina1, D.O.Makhota1, S.A.Korniy2, F.I.Danilov1

1Ukrainian State University of Chemical Technology, 8 Gagarin Ave., 49005 Dnipro, Ukraine
2Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79060 Lviv, Ukraine

Abstract: 

The effect of anodic treatment of a nickel-copper alloy (45 wt % Ni) in an ethanol solvent, which is a new type of room-temperature ionic liquids, on the morphological features of the surface and electrocatalytic properties is characterized. It is shown that the anodic etching of the alloy in ethaline has practically no effect on the chemical composition of the surface, but leads to the formation of a new type of surface morphology patterns: appearance of star-shaped and polyhedral asymmetric crystallites on a smoothed and defect-free surface. The anodic treatment of the nickel-copper alloy in ethaline at defined values of electrode potential allows significantly increasing the electrocatalytic activity towards the hydrogen evolution reaction in an aqueous alkaline medium, which can be used to create new highly efficient electrocatalytic materials for hydrogen energy.

Keywords: 
nickel-copper alloy, electrocatalytic materials, deep eutectic solvents, anode treatment, hydrogen energy.
References: 
1. S.A.Grigoriev, V.N.Fateev, D.G.Bessarabov et al., Int. J. Hydrogen Energy, 45, 26036 (2020).
https://doi.org/10.1016/j.ijhydene.2020.03.109
 
2. A.I.Osman, N.Mehta, A.M.Elgarahy et al., Environ. Chem. Lett.,?????????? (2021). https://doi.org/10.1007/s10311-021-01322-8..
 
3. R.Li, Y.Li, P.Yang et al., J. Energy Chem., 57, 547 (2021).
https://doi.org/10.1016/j.jechem.2020.08.040
 
4. H.Nady, M.Negem, RSC Adv., 6, 51111 (2016).
https://doi.org/10.1039/C6RA08348J
 
5. L.Yu, T.Lei, B.Nan et al., Energy, 97, 498 (2016).
https://doi.org/10.1016/j.energy.2015.12.138
 
6. ?????????????
 
7. K.R.Koboski, E.F.Nelsen, J.R.Hampton, Nanoscale Res. Lett., 8, 528 (2013).
https://doi.org/10.1186/1556-276X-8-528
 
8. E.L.Smith, A.P.Abbott, K.S.Ryder, Chem. Rev., 114, 11060 (2014).
https://doi.org/10.1021/cr300162p
 
9. B.B.Hansen, S.Spittle, B.Chen et al., Chem. Rev., 121, 1232 (2021).
https://doi.org/10.1021/acs.chemrev.0c00385
 
10. A.A.Kityk, V.S.Protsenko, F.I.Danilov et al., Surf. Coat. Technol., 375, 143 (2019).
https://doi.org/10.1016/j.surfcoat.2019.07.018
 
11. W.O.Karim, A.P.Abbott, S.Cihangir et al., Trans. Inst. Met. Finish., 96, 200 (2018).
https://doi.org/10.1080/00202967.2018.1470400
 
12. W.O.Karim, J.A.Juma, K.M.Omer et al., Electrochemistry, 89, 71 (2021).
https://doi.org/10.5796/electrochemistry.20-00129
 
13. A.P.Abbott, G.Frisch, J.Hartley et al., Prog. Nat. Sci. Mater. Int., 25, 595 (2015).
https://doi.org/10.1016/j.pnsc.2015.11.005
 
14. V.S.Protsenko, T.E.Butyrina, L.S.Bobrova et al., Mater. Lett., 270, 127719 (2020).
https://doi.org/10.1016/j.matlet.2020.127719
 
15. A.Kityk, V.Protsenko, F,Danilov et al., Colloids Surf. A, 613, 126125 (2021).
https://doi.org/10.1016/j.colsurfa.2020.126125
 
16. A.Kityk, V.Protsenko, F.Danilov et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 66 (2020).
https://doi.org/10.32434/0321-4095-2020-131-4-66-71
 
17. K.M.Ismail, A.M.Fathi, W.A.Badawy, Corros. Sci., 48, 1912 (2006).
https://doi.org/10.1016/j.corsci.2005.07.004
 
18. J.O.M.Bocris, B.T.Rubin, A.Despic et al., Electrochim. Acta, 17, 973 (1972).
https://doi.org/10.1016/0013-4686(72)90017-5
 
19. C.Yang, Q.B.Zhang, A.P.Abbott, Electrochem. Commun., 70, 60 (2016).
https://doi.org/10.1016/j.elecom.2016.07.004
 
20. Q.B.Zhang, Y.X.Hua, Phys. Chem. Chem. Phys., 16, 27088 (2014).
https://doi.org/10.1039/C4CP03041A
 
21. W.O.Karim, S.B.Aziz, M.A.Brza et al., Appl. Sci., 9, 4401 (2019).
https://doi.org/10.3390/app9204401
 
22. D.Landolt, P.F.Chauvy, O.Zinger, Electrochim. Acta, 48, 3185 (2003).
https://doi.org/10.1016/S0013-4686(03)00368-2
 
23. J.K.Chang, S.H.Hsu, I.W.Sun et al., J. Phys. Chem. C, 112, 1371 (2008).
https://doi.org/10.1021/jp0772474
 
24. R.Dehdari Vais, H.Yadegari, N.Sattarahmady et al., J. Electroanal. Chem., 815, 134 (2018).
https://doi.org/10.1016/j.jelechem.2018.03.017
 
25. A.Lasia, Int. J. Hydrogen Energy, 44, 19484 (2019).
https://doi.org/10.1016/j.ijhydene.2019.05.183
 
26. M.I.Jamesh, J. Power Sources, 333, 213 (2016).
https://doi.org/10.1016/j.jpowsour.2016.09.161
 
27. Q.Sun, Y.Dong, Z.Wang et al., Small, 1704137 (2018).
https://doi.org/10.1002/smll.201704137
 
 

Current number: