Funct. Mater. 2022; 29 (2): 209-214.

doi:https://doi.org/10.15407/fm29.02.209

Effect of heat treatment on the manifestation of a percolation phase transition in the semiconductor Pb1-xSnxTe solid solutions

G.O.Nikolaenko, E.I.Rogacheva, O.N.Nashchekina, G.V.Lisachuk

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

Investigation establish the influence of the technology of preparation and aging of the Pb1-xSnxTe solid solutions (0 < x≤0.09) on the manifestation of a percolation-type concentration-dependent phase transition associated with the formation of impurity continuum. The room-temperature dependences of microhardness H, electrical conductivity σ and the Seebeck coefficient S on the alloy composition after different types of heat treatment as well as after long-term aging of the alloys. In all cases, concentration-dependent anomalies in the region x = 0.015-0.03 were observed, indicating the presence of a percolation transition, but the nature of the anomalies was different. The obtained H(x), σ(x) and S(x) dependences are interpreted taking into consideration the influence of time and temperature factors on the diffusion processes occurring in the system, the concentration of intrinsic and impurity defects, and the percolation threshold.

Keywords: 
Pb1-xSnxTe solid solutions, percolation phase transition, heat treatment, aging, microhardness, electrical conductivity, Seebeck coefficient.
References: 
1.N.H.Abrikosov, L.E.Shelimova, Semiconductor Materials Based on Compounds AIVBVI, Nauka, Moscow (1975) [in Russian].
 
2. Y.I.Ravich, R.A.Efimova, I.A.Smirnov, Semiconductor Research Methods Applied to Lead Chalcogenides PbTe, PbSe, PbS, Nauka, Moscow (1968) [in Russian].
 
3. N.P.Gavaleshko, P.N.Gorlei, V.A.Shenderovskiu, Narrow-gap Semiconductors. Preparation and Physical Properties, Naukova Dumka, Kiev (1984) [in Russian].
 
4. CRC Handbook of Thermoelectrics, ed. by D.M.Rowe, London, New York, Washington: CRC Press, Boca Raton (1995). 
https://doi.org/10.1201/9781420038903
 
5. S.-Y.Xu, C.Liu, N.Alidoust et al., Nat. Commun., 3, 1192 (2012). 
https://doi.org/10.1038/ncomms2191
 
6. M.Orihash, Y.Noda, L.-D.Chen et al., J. Phys. Chem. Solids, 61, 919 (2000). 
https://doi.org/10.1016/S0022-3697(99)00384-4
 
7. Y.Gelbstein, G.Gotesman, Y.Lishzinker et al., Scripta Materials, 58, 251 (2008). 
https://doi.org/10.1016/j.scriptamat.2007.10.012
 
8. J.L.Cui, X.Qian, X.B.Zhao, J. Alloys and Compounds, 358, 228 (2003). 
https://doi.org/10.1016/S0925-8388(03)00049-5
 
9. E.I.Rogacheva, O.N.Nashchekina, N.K.Zhigareva et al., Izv. AN SSSR. Neorg. Mater., 25, 340 (1989).
 
10. E.I.Rogacheva, I.M.Krivulkin, V.P.Popov et al., Phys. Stat. Sol.(a), / 148, K65 (1995). 
https://doi.org/10.1002/pssa.2211480235
 
11. E.I.Rogacheva, O.S.Vodorez, J. Thermoelectricity, 2, 61 (2013).
 
12. E.I.Rogacheva, N.A Sinelnik, O.N.Nashchekina, Acta Phys. Pol. A, 84, 729 (1993).
https://doi.org/10.12693/APhysPolA.84.729
 
13. E.I.Rogacheva, I.M.Krivulkin, Semiconductors, 36, 966 (2002). 
https://doi.org/10.1134/1.1507273
 
14. B.I.Shklovskii, A.L.Efros, Electronic Properties of Doped Semiconductors, New York, Springer-Verlag (1984).
https://doi.org/10.1007/978-3-662-02403-4
 
15. D.Stauffer, A.Aharony, Introduction to Percolation Theory, London, Washington, DC: Taylor & Francis (1992).
 
16. E.I.Rogacheva, Jpn. J. Appl. Phys., 32, 775 (1993).
https://doi.org/10.7567/JJAPS.32S3.775
 
17. E.I.Rogacheva, J. Thermoelectricity, 2, 61 (2007).
 
18. E.I.Rogacheva, O.N.Nashchekina, in: Advanced Thermoelectric Materials, ed. by C.R.Park, New York: John Wiley & Sons Inc. (2019), p.383.
https://doi.org/10.1002/9781119407348.ch9
 
19. V.K.Grigorovich, Hardness and Microhardness of the Metals, Nauka, Moscow (1976) [in Russian].
 
20. T.Suzuki, H.Yoshinaga, S.Takeuchi, Dislocation Dynamics and Plasticity, Moscow, Mir (1989) [in Russian].
 
21. E.I.Rogacheva, I.M.Krivulkin, O.N.Nashchekina et al., Appl. Phys. Lett., 78, 1661 (2001). 
https://doi.org/10.1063/1.1355995
 

Current number: