Funct. Mater. 2022; 29 (2): 215-220.

doi:https://doi.org/10.15407/fm29.02.215

Electrochemical behavior of Co-Mo alloy

V.V.Shtefan, A.S.Bulhakova, N.A.Kanunnikova

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The functional properties of the Co-Mo alloy coatings on Cu substrates obtained from the electrolytes based on ammonium trilonate solutions with different molybdenum content were studied. Scanning electron microscopy revealed that electrolysis at high current densities led to the cracking of the coating. The increase of Mo content in the coatings above 30 mas. % caused the formation of an inhomogeneous coating with inclusions of various molybdenum and cobalt oxides. The influence of the content of molybdenum in the coatings on the corrosion behavior of the alloy in environments of different aggressivities was studied. Cobalt was shown in this study to play the decisive role in the electrochemical behavior of the alloy and the increase of the corrosion resistance was explained by the formation of the Co3O4 phase.

Keywords: 
alloy, deposition, cobalt, molybdenum, morphology, voltammetry, impedance.
References: 

1.V.Shtefan, M.Ved, N.Sakhnenko et al., Mater. Sci., 43, 429 (2007). https://doi.org/10.1007/ s11003-007-0049-5

2. M.V.Ved, T.O.Nenastina, V.V.Shtefan, et.al. Mater.Sci., 44, 840, (2008)

3. A.Subramania et al., Int. J. Hyd. En., 32, 2843 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.027

4. V.V.Kuznetsov, Z.V.Bondarenko, T.V.Psheni<->chkina et al., Electrochem., 43, 349 (2007). https://doi.org/10.1134/S1023193507030135

5. E.Gomez, E.Pellicer, E.Valles, J. Electroanal. Chem., 568, 29 (2004). https://doi.org/ 10.1016/j.jelechem.2003.12.032

6. V.S.Kublanovsky, Yu.S.Yapontseva, Electrocatal., 5, 372 (2014). https://doi.org/ 10.1007/s12678-014-0197-y

7. M.Ibrahim, El.S.A.Rehim, S.Moussa, J. of Appl. Electrochem., 33, 627 (2003). https://doi.org/10.1023/A:1024916903544

8. H.Krawiec et al., Mater. Chem. Phys., 183, 121 (2016). https://doi.org/10.1016/ j.matchemphys.2016.08.009

9. V.V.Kuznetsov et al., Russ. J. Electrochem., 44, 1350 (2008). https://doi.org/10.1134/ S1023193508120070

10. E.Gomez, E.Pellicer, E.Valles, J. Electroanal. Chem., 556, 137 (2003). https://doi.org/ 10.1016/S0022-0728(03)00339-5

11. S.P.Sidel'nikova, G.F.Volodina et al., Surf. Engin. Appl. Electrochem., 43, 425 (2007). https://doi.org/10.3103/S1068375507060038

12. E.Gomez, E.Pellicer, E.Valles, Surf. Coat. Tech., 197, 238 (2005). https://doi.org/ 10.1016/j.surfcoat.2004.09.017

13. J.Garci'a-Torrcs, E.Gomez, E.Valles, J. Appl. Electrochem., 39, 233 (2009). https://doi.org/10.1007/s10800-008-9661-9

14. H.Krawiec et al., Appl. Surf. Sci., 475, 162 (2019). https://doi.org/10.1016/j.apsusc.2018.12.099

15. S.Mahdavi, S.R.Allahkaram, J. All. Comp., 635, 150 (2015). https://doi.org/10.1016/ j.jallcom.2015.02.119

16. N.Tsyntsaru, S.S.Belevskii et al., Surf. Eng. and Apl. Electrochem., 43, 312 (2007). https://doi.org/10.3103/S106837550705002X

17. V.V.Shtefan, N.O.Kanunnikova, T.Y.Goncharenko, Mater. Sci., 57, 248 (2021). https://doi.org/10.1007/s11003-021-00539-w

18. V.V.Shtefan, A.S.Epifanova, A.A.Koval'ova et al., Mater. Sci., 53, 47 (2017). https://doi.org/10.1007/s11003-017-0042-6

19. V.V.Shtefan et al., Mater. Sci., 54, 512 (2019). https://doi.org/10.1007/s11003-019-00225-y

20. V.Shtefan, N.Kanunnikova et al., Mat. Tod. Proc., 6, 149 (2019). https://doi.org/10.1016/ j.matpr.2018.10.088

21. V.V.Shtefan, N.A.Kanunnikova, Prot. Met. Phys. Chem. Surf., 56, 379 (2020) https://doi.org/10.1134/S2070205120020239

Current number: