Funct. Mater. 2022; 29 (2): 228-236.

doi:https://doi.org/10.15407/fm29.02.228

Study of nucleation and crystallization in magnesium aluminosilicate glasses during heat treatment

Oksana Savvova1, Olena Babich2,3, Vadym Tymofeev4, Hennadii Voronov1, Oleksii Fesenko1, Oleksii Babich5

1O.M.Beketov National Technical University of Urban Economy, 7 Bazhanova Str., 61002 Kharkiv, Ukraine
2Ukrainian Scientific Research Institute of Ecological Problems, 6 Bakulina Str., 61166 Kharkiv, Ukraine
3Lugansk National Agrarian University, 68 Slobozhanska Str., 92703 Starobilsk, Ukraine
4Military Institute of Tank Troops of the National Technical University Kharkiv Polytechnic Institute, 192 Poltavskyi shliakh Str., 61000 Kharkiv, Ukraine
5Ivan Kozhedub National Air Force University, 77-79 Sumska Str., 61023 Kharkiv, Ukraine

Abstract: 

Nucleation and crystallization mechanisms during the heat treatment of magnesium aluminosilicate glasses has been established. It has been found that provision of dissipative structure to glass-ceramic materials via phase separation process during low-temperature heat treatment of magnesium aluminosilicate glasses allows obtaining a high-strength structure with high cracking resistance and elasticity. Obtained results can be used in the glass-ceramic applications focused on creation of modern composite armor.

Keywords: 
glass ceramic materials, dissipative structure, crystallization ability, cordierite, mullite, crack resistance.
References: 
1.O.V.Savvova, S.M.Logvinkov, O.V.Babich, A.R.Zdorik, Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 96 (2018).
 
2. S.N.Vandrai, T.V.Zaichuk, Yu.S.Ustinova et al., Glass and Ceramics, 76, 334 (2020).
https://doi.org/10.1007/s10717-020-00195-7
 
3. A.V.Zaichuk, A.A.Amelina, Y.V.Karasik et al., Functional Materials, 26, 174 (2019).
https://doi.org/10.15407/fm26.01.174
 
4. Sung-Burn, Se-Young Choi, Journal of the Korean Ceramic Society, 37, 604 (2000).
 
5. Jianfeng Wu, Chunjiang Ding, Xiaohong Xu, Xiaoyang Xu, Applied Ceramic Technology, 18, 1764 (2021).
https://doi.org/10.1111/ijac.13732
 
6. T.Benitez, S.Gomez, A.Pedro et al., Ceramics International, 43, 13031 (2017).
https://doi.org/10.1016/j.ceramint.2017.07.205
 
7. S.Seidel, M.Dittmer, W.Holand, C.Russel, Journal of the European Ceramic Society, 37, 2685 (2017).
https://doi.org/10.1016/j.jeurceramsoc.2017.02.039
 
8. Zhuohao Xiao, Shijin Yu, Yueming Li et al., Materials Science and Engineering, 139, 100518 (2020).
https://doi.org/10.1016/j.mser.2019.100518
 
9. D.M.Dixit, H.Singh, M.S.Attia, M.A.Amin, Journal of Experimental Nanoscience, 16, 181 (2021).
 
10. J.Wu, C.Ding, X.Xu, X.Xu, International journal of American Ceramic Society, 18, 1764 (2021).
https://doi.org/10.1111/ijac.13732
 
11. Gao Chenxiong, Zhao Xiangxun, Li Bo, Journal of Non-Crystalline Solids, 560, 120728 (2021).
https://doi.org/10.1016/j.jnoncrysol.2021.120728
 
12. O.V.Savvova, N.K.Blinova, O.I.Fesenko et al., Functional Materials, 28, 279 (2021).
https://doi.org/10.15407/fm28.02.279
13. O.Savvova, H.Voronov, O.Babich et al., Chem. Chem. Technol., 14, 583 (2020).
https://doi.org/10.23939/chcht14.04.583
 
14. O.V.Savvova, O.V.Babich, G.N.Shadrina, Functional Materials, 21, 421 (2014).
https://doi.org/10.15407/fm21.04.421
 
15. S.M.Logvinkov, G.D.Semchenko, G.N.Shabanova et al., Solid State Physics and Chemistry, 11, 723 (2010).
 
16. Lakov L., Zheng Shunqi, International Scientific Journal Security & Future, 2, 63 (2019).
 
17. Kusuma Wardhani Mas'udah, Markus Diantoro, Abdulloh Fuad, Journal of Physics: Conference Series, 1093, 012033 (2018).
https://doi.org/10.1088/1742-6596/1093/1/012033

Current number: