Funct. Mater. 2022; 29 (2): 237-243.

doi:https://doi.org/10.15407/fm29.02.237

Structure and antibacterial property of coordination polymer [Zn(4-[(8-hydroxy-5-quinolinyl)azo]- benzenesulfonic acid)(H2O)4]

Yanan Luo1, Pengfei Wang1, Kangming Liu1, Zhengyu Yang1, MujiaSong1, Xueling Cao2

1College of Pharmacy, Jilin Medical University, 5 Jilin Str., 132013 Jilin, P. R. China
2College of Science, Qiongtai Normal University, 571100 Hainan, P. R. China

Abstract: 

Complex [Zn(4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid)(H2O)4] (1) was successfully synthesized by solvothermal synthesis by H2L (H2L=4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid) and Zn(II) ion. Complex 1exhibits a zero-dimensional (0D) structure, which is connected into three-dimensional (3D) supramolecular network by hydrogen bonding and π ··· π stacking interaction. In addition, the antibacterial property of complex 1 was tested. The antibacterial property of Gram-negative bacteria is slightly better than that of Gram-positive bacteria in complex 1.

Keywords: 
hydrogen bonding, supramolecular structure, antibacterial property, stacking interaction.
References: 

 

 
1.B.Parmar, K.K.Bisht, Y.Rachuri et al., Inorg. Chem. Front., 7, 10821107 (2020).
https://doi.org/10.1039/C9QI01549C
 
2. S.Chand, A.Pal, R.Saha et al., Inorg. Chem., 59, 70567066 (2020).
https://doi.org/10.1021/acs.inorgchem.0c00551
 
3. A.Golmohamadpour, B.Bahramian, M.Khoobi et al., Photodiagn. Photodyn., 23, 331338 (2018).
https://doi.org/10.1016/j.pdpdt.2018.08.004
 
4. J.Wang, L.Zhou, C.Rao et al., Dyes and Pigments, 190, 109285 (2021).
https://doi.org/10.1016/j.dyepig.2021.109285
 
5. D.C.Hu, Y.Fan, C.D.Si et al., J. Solid State Chem., 241, 198204 (2016).
 
6. M.Nakhaei, K.Akhbari, M.Kalati et al., Inorg. Chem.Acta, 522, 120353 (2021).
https://doi.org/10.1016/j.ica.2021.120353
 
7. S.Bouson, A.Krittayavathananon, N.Phattharasupakun et al., R. Soc. Open Sci., 4, 170654 (2017).
https://doi.org/10.1098/rsos.170654
 
8. M.Hajibabaei, R.Zendehdel, Z.Panjali, J. Inorg. Organomet. P., 30, 46224626 (2020).
https://doi.org/10.1007/s10904-020-01612-8
 
9. K.Takahashi, T.Sato, H.Mori et al., Hyperfine Interact., 206, 15 (2012).
https://doi.org/10.1007/s10751-011-0497-z
 
10. Y.S.Shi, Q.Yu, J.W.Zhang et al., CrystEngCommv, 23, 16041615 (2021).
 
11. Y.N.Luo, H.Y.Jiang, L.Y.Yu et al., Inorg. Chem. Commun., 86, 304307 (2017).
 
12. M.Can, S.Demirci, A.K.Sunol et al., Micropor. Mesopor. Mat., 309, 110533 (2020).
https://doi.org/10.1016/j.micromeso.2020.110533
 
13. B.P.Xie, J.W.Chai, C.Fan et al., ACS Appl. Bio Mater., 3, 85258531 (2020).
 
14. J.S.Park, S.Jeong, S.Dho et al., Dyes & Pigments, 87, 4954 (2010).
https://doi.org/10.1016/j.dyepig.2010.02.003
 
15. O.V.Dolomanov, L.J.Bourhis, R.J.Gildea et al., J. Appl. Crystallogr., 42, 339 (2009).
https://doi.org/10.1107/S0021889808042726
 
16. G.M.Sheldrick, SHELXTL NT Crystal Structure Analysis Package[CP]. Version 5.10; Bruker AXS, Analytical X-ray System: Madison, WI (1999).
 
17. X.J.Duan, X.D.Du, B.B.Zhang et al., Biomedical Engineering and Clinical Medicine, 19, 237 (2015).

Current number: