Funct. Mater. 2022; 29 (2): 244-251.

doi:https://doi.org/10.15407/fm29.02.244

Optimization of rheological properties of Y2O3 slurries for obtaining IR-transparent ceramics

D.G.Chernomorets, O.S.Kryzhanovska, N.A.Safronova, A.E.Balabanov, A.G.Doroshenko, I.O.Vorona, S.V.Parkhomenko, A.V.Tolmachev, R.P.Yavetskiy

Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61072 Kharkiv, Ukraine

Abstract: 

The effect of dispersant concentration on the sedimentation stability of aqueous suspensions of Y2O3 nanopowders, as well as the influence of the slurry composition, such as the dispersant content and solid loading, on their rheological properties were investigated. It was found that 30 wt.% Y2O3 and 1.5 wt.% Dolapix CE64 water suspension with the highest solid loading has rheological properties close to Newtonian fluids and low viscosity. Increasing the dispersant or solid content leads to increase in slurry viscosity and loss of Newtonian behavior. Hemispherical samples of infrared transparent Y2O3 ceramics were obtained by the slip casting method followed by vacuum sintering at 1750°C. The obtained ceramics are characterized by a relative density of 99±1 %, the average grain size of 10-15 μm, and in-line transmittance of 30 % and 63 % at the wavelengths of 800 and 2000 nm, respectively.

Keywords: 
slip casting, dispersant, yttrium oxide, transparent ceramics.
References: 
1.Y.Xu, X.Mao, J.Fan et al., Ceram. Int., 43, 12 (2017).
http://dx.doi.org/10.1016/j.ceramint. 2017.04.017.
 
2. L.Jin, X.Mao, S.Wang et al., Ceram. Int., 35, 2 (2009).
https://doi.org/10.1016/j.ceramint. 2008.03.009.
 
3. A.L.Micheli, D.F.Dungan, J.V.Mantese, J. Am. Ceram. Soc., 75, 3 (1992).
https://doi.org/10.1111/j.1151-2916.1992.tb07863.x
 
4. C.S.Kim, M.J.Kim, H.Cho et al., Ceram. Int., 41, 10 (2015).
http://dx.doi.org/10.1016/ j.ceramint.2015.06.109.
 
5. D. Huo, Y.Zheng, X.Sun et al., J. Rare Earths, 30, 1 (2012).
https://doi.org/10.1016/S1002-0721(10)60639-4
 
6. T.Ikegami, J.-G.Li, T.Mori et al., J. Am. Ceram. Soc., 85, 7 (2002).
 
7. D.Yin, J.Wang, M.Ni et al., Materials, 444, 14 (2021). 
https://doi.org/10.3390/ma14020444
 
8. A.Krell, H.-W.Ma, Ber. Dt. Keram. Ges., 80, 4 (2003).
 
9. Z.Yousefian, G.Dini, M.Milani et al., Mater. Chem. Phys., 273, 15 (2021). 
https://doi.org/10.1016/j.matchemphys.2021.125097
 
10. J.Mouzon, E.Glowacki, M.Od'en, J. Mater. Sci., 43, 8 (2008). 
https://doi.org/10.1007/s10853-007-2261-y
 
11. C.H.Schilling, in: Encyclopedia of Materials: Science and Technology (2001).
https:// doi.org/10.1016/B0-08-043152-6/00248-5.
 
12. J.Mewis, Int. J. Miner. Process., 44 (1996). 
https://doi.org/10.1016/0301-7516(95)00014-3
 
13. S.P.Rao, S.S.Tripathy, A.M.Raichur, Colloids Surf. A Physicochem. Eng. Asp., 302, 1 (2007). 
https://doi.org/10.1016/j.colsurfa.2007.03.034
 
14. S.Gaydardzhiev, P.Ay, J. Mater. Sci., 41, 16 (2006). 
https://doi.org/10.1007/s10853-006-0354-7
 
15. M.Ivanov, E.Kalinina, Yu.Kopylov et al., J. Eur. Ceram. Soc., 26, 16 (2016).
http:// dx.doi.org/10.1016/j.jeurceramsoc.2016.06.013.
 
16. R.Suntako, P.Laoratanakul, N.Traiphol, Ceram. Int., 35, 3 (2009). 
https://doi.org/10.1016/j.ceramint.2008.06.011
 
17. Y.Kuroda, H.Hamano, T.Mori et al., Langmuir, 16 (2020).
https://doi:10.1021/ la9917031.
 
18. X.Li, Q.Li, Ceram. Int., 34, 2 (2008). 
https://doi.org/10.1016/j.ceramint.2006.10.018
 
19. C.H.Chin, A.Muchtar, C.H.Azhari et al., Ceram. Int., 41, 8 (2015). 
https://doi.org/10.1016/j.ceramint.2015.04.073
 
20. S.Zurcher, T.Graule, J. Eur. Ceram. Soc., 25, 6 (2005). 
https://doi.org/10.1016/j.jeurceramsoc.2004.05.002
 
21. F.Z.Shoja, H.Majidian, L.Nikzad, Int. J. Appl. Ceram. Technol., 18, 4 (2021). 
https://doi.org/10.1111/ijac.13766
 
22. Yu.G.Frolov, Course of 'olloid 'hemistry: Surface Phenomena and Disperse Systems, Himia, Moscow (1989) [in Russian].
 
23. M.D.Sacks, G.W.Scheiffele, in: Ceramic Engineering and Science Proceedings, 6 (1985). 
https://doi.org/10.1002/9780470320280.ch61
 
24. X.Xu, M.Oliveira, R.Fu et al., J. Eur. Ceram. Soc., 23, 9 (2003). 
https://doi.org/10.1016/S0955-2219(02)00068-7
 
25. M.N.Rahaman, in: Ceramic Processing and Sintering, Marcel Dekker Inc., New York (2003).
 
26. S.Hribalova, W.Pabst, J. Eur. Ceram. Soc., 41, 4 (2021). 
https://doi.org/10.1016/j.jeurceramsoc.2020.11.046
 
27. J.Wang, J.Ma, J.Zhang, Opt. Mater., 71 (2017).
https://doi.org/10.1016/j.optmat. 2016.04.029.
 
28. K.Ning, J.Wang, D.Luo et al., J. Eur. Ceram. Soc., 36, 1 (2016).
https://doi.org/10.1016/ j.jeurceramsoc.2015.09.007.
 

Current number: