Funct. Mater. 2022; 29 (2): 252-262.

doi:https://doi.org/10.15407/fm29.02.252

Synthetic and natural flavonols as promising fluorescence probes for β-glucosidase activity screening

O.O.Demidov1, E.S.Gladkov1,2, A.V.Kyrychenko1,2, A.D.Roshal1

1Institute of Chemistry and School of Chemistry, V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2State Scientific Institution Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Natural and synthetic flavonols are environmentally sensitive dyes whose emission properties are highly sensitive to their immediate environment. Here we describe the synthesis and spectral properties of flavonols bearing a series of substituents in the 4`-aryl ring. The synthesized flavonols were applied to study their capability for fluorescence sensing of β-glucosidase in physiological solutions. We found that 4`-fluoro- and 4`-carboxyflavonols revealed the essential fluorescence enhancement in the presence of β-glucosidase, which is characteristic of the protein-induced turn-on effect. The fluorescence titration experiments suggest that the studied flavonols favor binding to the protein, so that the probes leave a polar aqueous solution and enters a nonpolar hydrophobic environment inside a protein pocket. These findings were collaborated by molecular docking calculations, which allowed us to identify favorable binding modes and the binding affinity of the synthetic flavonols towards β-glucosidases from various sources. Molecular docking revealed the high binding affinity towards β-glucosidase, which is the same order of magnitude as the well-known natural flavonols. Our results suggest that the studied flavonol dyes can be a promising scaffold for developing novel flavonol glycosides as turn on/off fluorescent indicators of β-glucosidase activity.

Keywords: 
flavonol, fluorescence probe, β-glucosidase, fluorescence indicator, molecular docking.
References: 

1.I.E.Serdiuk, A.D.Roshal, Dyes and Pigments, 138, 223 (2017). http://dx.doi.org/ 10.1016/j.dyepig.2016.11.028.

2. A.S.Klymchenko, Acc. Chem. Res., 50, 366 (2017). https://doi.org/10.1021/acs.accounts. 6b00517.

3. S.Hofener, P.C.Kooijman, J.Groen et al., Phys. Chem. Chem. Phys., 15, 12572 (2013). https://doi.org/10.1039/C3CP44267E.

4. A.Y.Chumak, V.O.Mudrak, V.M.Kotlyar, A.O.Doroshenko, J. Photochem. Photobiol. A, 406, 112978 (2021). https://doi.org/10.1016/ j.jphotochem.2020.112978.

5. Z.Xu, X.Zhao, M.Zhou et al., Sens. Actuators. B, 345, 130367 (2021). https://doi.org/ 10.1016/j.snb.2021.130367.

6. T.Qin, B.Liu, Y.Huang et al., Sens. Actuators. B, 277, 484 (2018). https://doi.org/10.1016/ j.snb.2018.09.056.

7. T.Qin, B.Liu, Z.Xu et al., Sens. Actuators, B, 336, 129718 (2021). https://doi.org/10.1016/ j.snb.2021.129718.

8. X.Bi, B.Liu, L.McDonald et al., J. Phys. Chem. B, 121, 4981 (2017). https://doi.org/ 10.1021/acs.jpcb.7b01885.

9. D.McDonald, M.Kasha, J. Phys. Chem., 88, 2235 (1984). https://doi.org/10.1021/j150655a012.

10. A.D.Roshal, J.A.Organero, A.Douhal, Chem. Phys. Lett., 379, 53 (2003). https://doi.org/10.1016/j.cplett.2003.08.008

11. I.E.Serdiuk, A.D.Roshal, RSC Adv., 5, 102191 (2015). https://doi.org/10.1039/ C5RA13912K.

12. A.O.Doroshenko, A.V.Kyrychenko, O.M.Valyashko et al., J. Photochem. Photobiol. A, 383, art. no. 111964 (2019). https://doi.org/ 10.1016/j.jphotochem.2019.111964.

13. A.P.Demchenko, S.Ercelen, A.D.Roshal, A.S.Klymchenko, Polish J. Chem., 76, 1287 (2002).

14. V.F.Valuk, G.Duportail, V.G.Pivovarenko, J. Photochem. Photobiol., 175, 226 (2005). https://doi.org/10.1016/j.jphotochem.2005.05.003.

15. X.Poteau, G.Saroja, C.Spies, R.G.Brown, J. Photochem. Photobio, 162, 431 (2004). https://doi.org/10.1016/s1010-6030(03)00429-5.

16. W.Liu, Y.Wang, W.Jin et al., J. Photochem. Photobio, 383, 299 (1999). https://doi.org/ 10.1016/s0003-2670(98)00789-2.

17. X.Jin, X.Sun, X.Di et al., Sens. Actuators, B, 224, 209 (2016). https://doi.org/10.1016/j.snb.2015.09.072

18. A.D.Roshal, A.V.Grigorovich, A.O.Doro<->shenko et al., J. Phys. Chem. A, 102, 5907 (1998). https://doi.org/10.1021/jp972519w.

19. A.D.Roshal, T.V.Sakhno, A.A.Verezubova et al., Funct. Mater., 10, 419 (2003).

20. A.Munoz, A.D.Roshal, S.Richelme et al., Russ. J. Gen. Chem., 74, 438 (2004). https://doi.org/10.1023/B:RUGC.0000030403.41976.5c.

21. B.Liu, Y.Pang, R.Bouhenni et al., Chem. Commun., 51, 11060 (2015). https://doi.org/ 10.1039/C5CC03516C.

22. K.A.Bertman, C.S.Abeywickrama, H.J.Baumann et al., J. Mater. Chem. B, 6, 5050 (2018). https://doi.org/10.1039/C8TB00325D.

23. K.A.Bertman, C.S.Abeywickrama, A.Ingle et al., J. Fluoresc., 29, 599 (2019). https://doi.org/10.1007/s10895-019-02371-7.

24. S.Concilio, M.Di Martino, A.M.Nardiello et al., Molecules, 25, 3458 (2020). https://doi.org/10.3390/molecules25153458.

25. L.McDonald, B.Liu, A.Taraboletti et al., J. Mater. Chem. B, 4, 7902 (2016). https://doi.org/10.1039/C6TB02456D.

26. B.Liu, J.Wang, G.Zhang et al., ACS Appl. Mater. Inter., 6, 4402 (2014). https://doi.org/10.1021/am500102s.

27. B.Liu, L.McDonald, Q.Liu et al., Sens. Actuators, B, 235, 309 (2016). https://doi.org/ 10.1016/j.snb.2016.05.079

28. I.E.Serdiuk, M.Reszka, H.Myszka et al., RSC Adv., 6, 42532 (2016). https://doi.org/ 10.1039/C6RA06062E.

29. A.T.Adetunji, F.B.Lewu, R.Mulidzi, B.Ncube, J. Soil Plant Nutr., 17, 794 (2017).
https://doi.org/10.4067/S0718-95162017000300018

30. L.L.Escamilla-Trevino, W.Chen, M.L.Card et al., Phytochem., 67, 1651 (2006). https://doi.org/10.1016/j.phytochem.2006.05.022

31. A.V.Morant, K.Jorgensen, C.Jorgensen et al., Phytochem., 69, 1795 (2008). https://doi.org/ 10.1016/j.phytochem.2008.03.006

32. T.D.Butters, Curr Opin Struct Biol., 11, 412 (2007). https://doi.org/10.1016/j.cbpa. 2007.05.035

33. X.Zhou, Z.Huang, H.Yang et al., Biomed Pharmacotherapy, 91, 504 (2017). https:// doi.org/10.1016/j.biopha.2017.04.113

34. M.A.Smith, R.M.Neumann, R.A.Webb, J. Heterocycl. Chem., 5, 425 (1968). https:// doi.org/10.1002/jhet.5570050323

35. Z.Qiang, W.Chun, L.Yunping et al., Chin. J. Appl. Environ. Biol., 23, 232 (2017). https://doi.org/10.3724/SP.J.1145.2016.04019.

36. D.S.Goodsell, G.M.Morris, A.J.Olson, J. Mol. Recognit., 9, 1 (1996). https://doi.org/ 10.1002/(SICI)1099-1352(199601)9:1::AID-JMR2413.0.CO;2-6

37. O.Trott, A.J.Olson, J. Comput. Chem., 31, 455 (2010). https://doi.org/10.1002/jcc.21334

38. P.Isorna, J.Polaina, L.Latorre-Garcia et al., J. Mol. Biol., 371, 1204 (2007). https://doi.org/ 10.1016/j.jmb.2007.05.082

39. L.Xia, M.Ruppert, M.Wang, ACS Chem. Biol., 7, 226 (2012). https://doi.org/10.1021/ cb200267w

40. S.Tribolo, J.-G.Berrin, P.A.Kroon, J. Mol. Biol., 370, 964 (2007). https://doi.org/ 10.1016/j.jmb.2007.05.034

41. C.J.Williams, J.J.Headd, N.W.Moriarty et al., Prot. Sci., 27, 293 (2018). doi:https://doi.org/10.1002/pro.3330

42. W.Humphrey, A.Dalke, K.Schulten, J.Mol. Graphics, 14, 33 (1996). doi: 10.1016/0263-7855(96)00018-5

43. L.Chebil, C.Humeau, J.Anthoni et al., Chem. Eng. Data, 52, 1552 (2007), https://doi.org/ 10.1021/je7001094

44. S.K.Lee, I.H.Lee, H.J.Kim et al., EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions (2003), p.418. 

45. T.Cheng, Y.Zhao, X.Li et al., J. Chem. Inf. Model., 47, 2140 (2007). https://doi.org/ 10.1021/ci700257y

46. Y.Bhatia, S.Mishra, V.S.Bisaria, Crit. Rev. Biotech., 22, 375 (2002). https://doi.org/ 10.1080/07388550290789568.

47. J.R.Ketudat Cairns, B.Mahong, S.Baiya, J.-S.Jeon, Plant Sci., 241, 246 (2015). doi: https://doi.org/10.1016/j.plantsci.2015.10.014

48. S.He, S.G.Withers, J. Biolog. Chem, 272, 24864 (1997). https://doi.org/10.1074/ jbc.272.40.24864.

49. C.Proenca, M.Freitas, D.Ribeiro et al., J. Enzyme Inhib. Med. Chem., 32, 1216 (2017). https://doi.org/10.1080/14756366.2017.1368503

50. L.Zeng, G.Zhang, S.Lin, D.Gong, J. Agric. Food Chem., 64, 6939 (2016). https:// doi.org/10.1021/acs.jafc.6b02314.

51. K.Tadera, Y.Minami, K.Takamatsu, T.I.Matsuoka, J. Nutrition. Sci. Vitaminology, 52, 149 (2006). https://doi.org/10.3177/jnsv.52.149.

52. T.A.Ajayeoba, J.O.Woods, A.O..Ayeni, J. Mol. Struct., 1237, 130275 (2021). https://doi.org/ 10.1016/j.molstruc.2021.130275

53. G.-Y.Chen, H.Zhang, F.-Q.Yang, Analyt. Chim. Actav, 1142, 19 (2021). https://doi.org/ 10.1016/j.aca.2020.10.047

54. M.Kazmi, S.Zaib, A.Ibrar et al., Bioorg. Chem., 77, 190 (2018). https:// doi.org/10.1016/ j.bioorg.2017.12.022

55. S.Riaz, I.U.Khan, M.Yar et al., J. Bioorg. Chem., 57, 148 (2014). https://doi.org/ 10.1016/j.bioorg.2014.10.007

56. A.D.Snizhko, A.V.Kyrychenko, E.S.Gladkov, Int. J. Mol. Sci., 23, 3781 (2022).

57. S.Khan, T.Pozzo, M.Megyeri et al., BMC Biochem., 12, 11 (2011). https://doi.org/ 10.1186/1471-2091-12-11

Current number: