Funct. Mater. 2022; 29 (2): 299-304.
Biogenic hydroxyapatite-based composites modified by magnetite and chitosan: synthesis, phase composition and structure
Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine
In the present work, a method of synthesis of biogenic hydroxyapatite-based composites modified by magnetite (1, 5, 25, 50 % by weight) and chitosan was developed. The composition and structure were studied by X-ray diffraction analysis (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). According to X-ray phase analysis, the particle size varies from 43.6 nm to 53.8 nm for composites containing magnetite obtained by chemical precipitation and from 43.6 nm to 50.1 nm for composites containing magnetite obtained by thermal decomposition in a nitrogen environment. The investigation of morphology showed that composite materials, regardless of the ratio of BHA and magnetite and its type (method of production) are characterized by significant agglomeration of rounded particles.
1.M.Sadat-Shojai, M.T.Khorasani, E.Dinpanah-Khoshdargi, A.Jamshidi, Acta Biomater., 9, 7591 (2013). https://doi.org/10.1016/j.actbio.2013.04.012 |
||||
2. M.R.Ghazanfari, M.Kashefi, S.F.Shams, M.R.Jaafari, Biomedical Applications, Biochem. Res., 1 (2016). https://doi.org/10.1155/2016/7840161 |
||||
3. H.Fatima, K.S.Kim, Korean J. Chem. Eng., 34, 589 (2017). https://doi.org/10.1007/s11814-016-0349-2 |
||||
4. F.Shahidi, R. ????????, Adv. Food Nutr. Res., 49, 93 (2005). https://doi.org/10.1016/ S1043-4526(05)49003-8 https://doi.org/10.1016/S1043-4526(05)49003-8 |
||||
5. J.Synowiecki, N.A.Al-Khatteb, Crit. Rev. Food Sci. Nut., 43, 145 (2003). https://doi.org/10.1080/10408690390826473 |
||||
6. A.Tampieri, T.D'Alessandro, M.Sandri, Acta Biomater., 8, 843 (2012). https://doi.org/10.1016/j.actbio.2011.09.032 |
||||
7. T.Iwasaki, Adv. Topics, 175 (2017). http://dx.doi.org/10.57725/54344 | ||||
8. S.Sprio, S.Panseri, A.Adamiano, Frontiers in Nanosci. Nanotech., 3, 1 (2017). https://doi.org/10.15761/ FNN.1000145 | ||||
9. J.He, H.Hu, X.Zeng, Reg. Biomater., 4, 97 (2017). https://doi.org/10.1093/rb/rbw039 |
||||
10. O.Sych, N.Pinchuk, A.Parkhomey et al., Funct. Mater., 14, 430 (2007). | ||||
11. A.Synytsia, O.Sych, A.Iatsenko et al., Appl. Nanosci. (2021). https://doi.org/10.1007/ s13204-021-01797-5 |
||||
12. S.M.Hussain, K.L.Hess, J.M.Gearhart et al., Toxicol in Vitro, 19, 975 (2007). https://doi.org/10.1016/j.tiv.2005.06.034 |
||||
13. S.T.Shah, W.A.Yehye, O.Saad, Nanomater. (Basel), 7, 306 (2017). https://doi.org/10.3390/nano7100306 |
||||