Funct. Mater. 2022; 29 (2): 305-313.

doi:https://doi.org/10.15407/fm29.02.305

Peculiarities of nanosized relief formation on the CdxHg1-xTe single crystals surface using K2Cr2O7-HBr-solvent etchants

M.V.Chayka1, Z.F.Tomashyk2, V.M.Tomashyk2, G.P.Malanych2, A.A.Korchovyi2

1Zhytomyr Franko State University, 40 Velyka Berdychivska Str., 10008 Zhytomyr, Ukraine 2V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

The regularities of chemical-dynamic and chemical-mechanical polishing of the CdxHg1-xTe (x = 0.2) single crystals surface by bromine-emerging etchants of K2Cr2O7-HBr-solvent have been experimentally established. The dependences solution concentration - dissolution rate have been constructed and the concentration limits of polishing solutions have been determined. The effect of the nature of the organic solvent on the rate of dissolution and the quality of the polished surface has been also determined. It was shown that the dissolution process is limited by diffusion stages. It was found that dilution of the base polishing solution by tartaric acid and ethylene glycol leads to the formation of slow polishing etchants with small (1.5-18.5 μm·min-1) etching rates. The condition and composition of the semiconductor surface after the polishing process have been investigated using metallography, atomic force and scanning electron microscopy. The compositions of polishing etchants and conditions for formation of nanosized relief on the surface of CdxHg1-xTe single crystals have been optimized.

Keywords: 
chemical polishing, single crystal, semiconductor, solid solution, surface, etchant.
References: 
.Yu.P.Gnatenko, Yu.P.Piryatinski, R.V.Gamernyk et al., Proc. of SPIE, 5209, 156 (2015).
https://doi.org/10.1117/12.516446
 
2. V.V.Bogoboyashchii, K.R.Kurbanov, A.P.Oksanich, Functional Materials, 7, 546 (2000).
 
3. A.Krotkusa, R.Adomavicius, G.Molis et al., J. Appl. Phys., 96, 4006 (2005).
https://doi.org/10.1063/1.1787133
 
4. V.A.Perevoshchikov, Vysokochistye Veshchestva, 2, 5 (1995).
 
5. D.L.Dreifus, R.M.Kolbas, B.P.Sneed, J.F.Schetzina, Mater. Res. Soc. Symp. Proc., 161, 323 (1990).
https://doi.org/10.1557/PROC-161-323
 
6. V.Srivastav, R.Pal, H.P.Vyas, Opto-Electron. Rev., 13, 197 (2005).
 
7. H.Huang, J.J.Xu, H.J.Qiao et al., Semicond. Sci. Technol., 16, L85 (2001).
https://doi.org/10.1088/0268-1242/16/11/103
 
8. W.Wang, Lu Chen, Gu Renjie et al., Proc. of SPIE., 8419, 84190U (2012).
 
9. O.A.Fedyaeva, Russ. J. Phys. Chem., 85, 1211 (2011).
https://doi.org/10.1134/S0036024411070041
 
10. J.P.Williams, S.P.Wilks, R.H.Williams, J. Vac. Sci. Technol. A., 13, 2676 (1995).
https://doi.org/10.1116/1.579467
 
11. M.V.Chayka, R.O.Denysyuk, Z.F.Tomashyk et al., Vopr. Khim. Khim. Tekhnol., 1, 54 (2018).
 
12. Z.I.Zakharuk, I.M.Rarenko, O.M.Krylyuk et al., Ukrainian chemical journal, 66, 99 (2000).
 
13. M.V.Chayka, Z.F.Tomashyk, V.M.Tomashyk et al., Functional Materials, 26, 414 (2019).
https://doi.org/10.15407/fm26.01.189
 
14. M.C.Duff, A.Burger, M.Groza et al., Proc. of SPIE, 7079, 70790T (2008).
 
15. M.Chayka, Z.Tomashyk, V.Tomashyk et al., Appl. Nanosci. (Switzerland),12, 604, (2021).
https://doi.org/10.1007/s13204-021-01716-8
 
16. D.R.Lide, Handbook of Chemistry and Physics, CRC Press, London (2009).
 
17. K.Sangwal, Etching of Crystals. Theory, Experiment, and Application, North Holland, Netherlands (1987).
 
18. S.S.Pop, I.S.Sharodi, Physical Electronics, Lviv, Yevrosvit (2001) [in Ukrainian].
 
19. M.V.Chayka, Z.F.Tomashyk, V.M.Tomashyk et al., Vopr. Khim. Khim. Tekhnol., 4, 191 (2020).
 

Current number: