Funct. Mater. 2022; 29 (3): 326-330.

doi:https://doi.org/10.15407/fm29.03.326

Dependence of neutron-sensitive plastic scintillator's n/γ-discrimination capability on the shifter's concentration

P.M.Zhmurin, D.A.Yelisieiev, O.V.Yelisieieva, V.D.Alekseev, Yu.O.Hurkalenko

Institute of Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

A number of polystyrene based plastic scintillators containing 30.0 wt. % 2,5-diphenyloxazole and various concentration of the shifter 9,10-diphenylanthracene (0.02-2.0 wt. %) was obtained. The spectral-luminescent and scintillation characteristics of the obtained scintillators are investigated. The threshold character of the dependence of the n/γ-discrimination parameter FOM on the concentration of 9,10-diphenylanthracene molecules in the plastic scintillator is shown. The value of the triplet excitation energy diffusion coefficient is estimated as D ~ 7.6 ·10-7cm2/s. A criterion for the optimal content of the shifter in a neutron-sensitive plastic scintillator is proposed.

Keywords: 
plastic scintillator, shifter, light yield, n/gamma-discrimination.
References: 
1. M.C.Flaska, S.A.Pozzi, Nuclear Instruments and Methods in Physics Research A, 577, 654 (2007).
https://doi.org/10.1016/j.nima.2007.04.141
 
2. I.A.Pawelczak, S.A.Ouedraogo, A.M.Glenn et al., Nuclear Instruments and Methods in Physics Research A, 711, 21 (2013).
https://doi.org/10.1016/j.nima.2013.01.028
 
3. T.Yanagida, K.Watanabe, Y.Fujimoto, Nuclear Instruments and Methods in Physics Research A, 784, 111 (2015).
https://doi.org/10.1016/j.nima.2014.12.031
 
4. K.P.Chiggino, D.J.Haines, T.A.Smith et al., Canadian Journal of Chemistry, 73, 2015 (1995).
https://doi.org/10.1139/v95-249
 
5. J.C.Amicangelo, Journal of Physical Chemistry A, 109, 9174 (2005).
https://doi.org/10.1021/jp053445o
 
6. M.D.Lumb, L.C.Pereira, Organic Scintillators and Scintillation Counting, Academic Press (1971).
 
7. H.Mohan, O.Brede, J.P.Mittal, Journal of Photochemestry and Photobiology A: Chemestry, 140, 191 (2001).
https://doi.org/10.1016/S1010-6030(01)00396-3
 
8. G.Walter, A.Coche, Nuclear Instruments and Methods, 23, 147 (1963).
https://doi.org/10.1016/0029-554X(63)90027-2
 
9. R.R.Hansen, P.L.Reeder, A.J.Peurrung, D.C.Stromswold, IEEE Transactions on Nuclear Science, 47, 2024 (2000).
https://doi.org/10.1109/23.903840
 
10. N.Zaitseva, B.L.Rupert, I.Pawelczak et al., Nuclear Instruments and Methods in Physics Research A, 668, 88 (2012).
https://doi.org/10.1016/j.nima.2011.11.071
 
11. https://eljentechnology.com/products/plastic-scintillators/ej-299-33a-ej...
 
12. J.Hartman, A.Barzilov, E.E.Peters, S.W.Yates, Nuclear Instruments and Methods in Physics Research A, 804, 137 (2015).
https://doi.org/10.1016/j.nima.2015.09.068
 
13. P.N.Zhmurin, D.A.Yelisieiev, V.D.Alekseev et al., Functional Materials, 27, 458 (2020).
 
14. P.N.Zhmurin, D.A.Eliseev, V.N.Pereymak et al., Functional Materials, 24, 476 (2017).
https://doi.org/10.15407/fm24.03.476
 
15. V.G.Senchishin, V.N.Lebedev, A.F.Adadurov et al., Functional Materials, 10, 281 (2003).
 
16. J.S.Brinen, J.G.Koren, Chemical Physics Letters, 2, 671 (1968).
https://doi.org/10.1016/0009-2614(63)80050-0
 
17. F.S.Dainton, T.Morrow, G.A.Salmon, G.F.Thompson, Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences, 328, 457 (1972).

Current number: