Funct. Mater. 2022; 29 (3): 331-337.

doi:https://doi.org/10.15407/fm29.03.331

Study of the photoluminescence spectra observed from different points on the surface of a polycrystalline CVD ZnSe sample with an excess of selenium and oxygen with a change in the wavelength of the exciting light

I.I.Abbasov1, M.A.Musayev1, J.I.Huseynov2, L.A.Aliyeva3, S.Q.Nuriyeva4, A.V.Sharifova1, R.Sh.Rahimov4, J.I.Ismayilov1, N.N.Hashimova1

1Azerbaijan State Oil and Industry University
2Azerbaijan State Pedagogical University
3Institute of Physics of the NAS of Azerbaijan
4Baku State University,Nanotechnology Center

Abstract: 

We studied photoluminescence (PL) spectra in the wavelength range of 458-565 nm, as well as excitation spectra with maxima at λ = 505, 529, 542, and 565 nm, obtained using a xenon lamp (Cary Eclipse spectrofluorimeter) from polished and unpolished surfaces of the same previously undoped polycrystalline CVD (chemical vapor deposition) ZnSe sample with excess selenium and oxygen (ZnSe(O)Se). It has been shown that the spectral positions of all the maxima observed from the polished and unpolished surface of the sample are the same, and the intensity and structure of the excitation spectrum for the maxima at λ = 529 nm and 542 nm differ slightly, but are different for λ = 505 nm and 565 nm. We believe that the differences may be related to the uneven distribution of oxygen and background impurities in the sample under study, where oxygen complexes with their intrinsic point defects play an important role in the formation of emission centers of polycrystalline CVD ZnSe.

Keywords: 
polycrystalline CVD (chemical vapor deposition) ZnSe, photoluminescence spectra, additional absorption edge, point defects, band anti-crossing theory.
References: 
1. V.I.Gavrilenko, A.M.Grekhov, D.V.Korbutyak, V.G.Litovchenko, Optical Properties of Semiconductors: Handbook, Naukova Dumka, Kiev (1987) [in Russian].
 
2. N.K.Morozova, New in the Optics of II-VI-O Compounds. (New Possibilities of Optical Diagnostics of Single-crystal Systems with Defects), LAP LAMBERT Academic Publishing, Riga (2021) [in Russian].
 
3. M.Alizadeh, V.Ya.Degoda, Ukr. J. Phys., 63, 557 (2018).
https://doi.org/10.15407/ujpe63.6.557
 
4. M.Alizadeh, V.Ya.Degoda, B.V.Kozhushko et al., Funct. Mater., 24, 206 (2017).
https://doi.org/10.15407/fm24.02.206
 
5. Yu.F.Vaksman, J. Semicond., 29, 346 (1995).
https://doi.org/10.1016/S0140-6736(95)92655-0
 
6. W.Walukiewicz, W.Shan, K.M.Yu et al., Phys. Rev. Lett., 85, 1552 (2000).
https://doi.org/10.1103/PhysRevLett.85.1552
 
7. K.M.Yu, W.Walukiewicz, J.Wu et al., Phys. Rev. Lett., 91, 246403 (2003).
https://doi.org/10.1103/PhysRevLett.91.246403
 
8. N.K.Morozova, I.N.Miroshnikova, J. Semicond., 54, 59 (2020).
https://doi.org/10.1134/S1063782620010169
 
9. G.N.Ivanova, V.A.Kasiyan, D.D.Nedeoglo et al., J. Semicond., 32, 171 (1998).
https://doi.org/10.1134/1.1187338
 
10. V.I.Oleshko, S.S.Vil'chinskaya, N.K.Morozova, FTP, 55, 403 (2021).
https://doi.org/10.1134/S1063782621050110
 
11. I.Abbasov, M.Musayev, J.Huseynov et al., Ukr. J. Phys. Opt., 21, 103 (2020).
https://doi.org/10.3116/16091833/21/2/103/2020
 
12. I.Abbasov, M.Musayev, J.Huseynov et al., Ukr. J. Phys. Opt., 21, 159 (2020).
https://doi.org/10.3116/16091833/21/3/159/2020
 
13. B.L.Abrams, P.H.Holloway, Chem. Rev., 104, 5783 (2004).
https://doi.org/10.1021/cr020351r
 
14. J.A.Garcia, A.Remon, A.Zubiaga et al., Phys. Stat. Sol. (a), 194, 338 (2002).
https://doi.org/10.1002/1521-396X(200211)194:1<338::AID-PSSA338>3.0.CO;2-D
 
15. G.G.Devyatykh, E.M.Gavrishchuk, A.Yu.Dadanov, High-purity Subst., 2, 174 (1990).
 
16. I.Abbasov, M.Musayev, J.Huseynov et al., Int. J. Mod. Phys. B, 2250018 (2022). https://doi.org/10.1142/S0217979222500187
https://doi.org/10.1142/S0217979222500187
 
17. N.K.Morozova, I.I.Abbasov, E.M.Gavrishuk et al., FTP, 56, 80 (2022).
https://doi.org/10.21883/SC.2022.05.53427.9793
 
18. Y.Yu.Peter, M.Cardona, Fundamentals of Semiconductors, Fizmatlit, Moscow (2002) [in Russian].
 

Current number: