Funct. Mater. 2022; 29 (3): 338-345.

doi:https://doi.org/10.15407/fm29.03.338

Features of pseudoisocyanine J-aggregates formation in spin-assisted layer-by-layer assembled films and their interaction with metal nanoparticles

I.I.Grankina, I.I.Bespalova, S.L.Yefimova, A.V.Sorokin

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Features of pseudoisocyanine J-aggregates formation in layer-by-layer assembled polymer films by the spin-assisted method were studied by optical spectroscopy. The films prepared by the spin-assisted LbL method appeared to be thicker and more inhomogeneous compared with those prepared by the sprayed LbL method. As a result, a large topological disorder causing weaker dipole-dipole interaction was revealed for the J-aggregates. Plasmon enhancement of the J-aggregates luminescence by gold and silver nanoparticles was studied. Due to PIC J-aggregates features in spin-assisted LbL films the luminescence enhancement by gold NPs appeared to be less efficient compared to the J-aggregates in sprayed LbL films. However, due to the H-band of PIC J-aggregates, the luminescence enhancement by silver NPs was achieved despite the large spectral distance between the corresponding plasmon band and J-band.

Keywords: 
J-aggregate, metal nanoparticle, layer-by-layer assembly, exciton, plasmon, luminescence.
References: 
1. F.Wurthner, T.E.Kaiser, C.R.Saha-Moller, Angew. Chemie Int. Ed., 50, 3376 (2011).
https://doi.org/10.1002/anie.201002307
 
2. J.L.Bricks, Y.L.Slominskii, I.D.Panas et al., Methods Appl. Fluoresc., 6, 012001 (2017).
https://doi.org/10.1088/2050-6120/aa8d0d
 
3. J.Knoester, V.M.Agranovich, in: Thin Film. Nanostructures Electron. Excit. Org. Based Nanostructures, ed. by V.M.Agranovich and G.F.Bassani, v.31 (2003).
 
4. A.V.Sorokin, S.L.Yefimova, Y.V.Malyukin, in: Encycl. Polym. Sci. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA (2018).
 
5. N.V.Pereverzev, I.A.Borovoy, O.O.Sedyh et al., Funct. Mater., 21, 409 (2014).
https://doi.org/10.15407/fm21.04.409
 
6. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 118, 7599 (2014).
https://doi.org/10.1021/jp412798u
 
7. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 119, 2743 (2015).
https://doi.org/10.1021/jp5102626
 
8. A.V.Sorokin, N.V.Pereverzev, V.M.Liakh et al., Funct. Mater., 22, 316 (2015).
https://doi.org/10.15407/fm22.03.316
 
9. A.V.Sorokin, I.I.Grankina, I.I.Bespalova et al., J. Phys. Chem. C, 124, 10167 (2020).
https://doi.org/10.1021/acs.jpcc.0c00583
 
10. M.I.Stockman, Opt. Express, 19, 22029 (2011).
https://doi.org/10.1364/OE.19.022029
 
11. M.I.Stockman, Phys. Today, 64, 39 (2011).
https://doi.org/10.1063/1.3554315
 
12. Metal-Enhanced Fluorescence, ed. by C.D.Geddes, John Wiley & Sons, Inc., Hoboken, NJ, USA (2010).
 
13. R.Badugu, J.R.Lakowicz, in: Encycl. Spectrosc. Spectrom., ed. by J.C.Lindon, G.E.Tranter, D.W.Koppenaal, 3rd ed., Elsevier (2017), p.676.
 
14. M.Bauch, K.Toma, M.Toma et al., Plasmonics, 9, 781 (2014).
https://doi.org/10.1007/s11468-013-9660-5
 
15. M.Li, S.K.Cushing, N.Wu, Analyst, 140, 386 (2015).
https://doi.org/10.1039/C4AN01079E
 
16. J.Dong, Z.Zhang, H.Zheng et al., Nanophotonics, 4, (2015).
https://doi.org/10.1515/nanoph-2015-0028
 
17. Multilayer Thin Films, ed. by G.Decher, J.B.Schlenoff, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2012).
 
18. Y.Li, X.Wang, J.Sun, Chem. Soc. Rev., 41, 5998 (2012).
https://doi.org/10.1039/c2cs35107b
 
19. Y.Xiang, S.Lu, S.P.Jiang, Chem. Soc. Rev., 41, 7291 (2012).
https://doi.org/10.1039/c2cs35048c
 
20. G.Decher, Science, 80, 1232 (1997).
https://doi.org/10.1126/science.277.5330.1232
 
21. A.Izquierdo, S.S.Ono, J.-C.Voegel et al., Langmuir, 21, 7558 (2005).
https://doi.org/10.1021/la047407s
 
22. Y.Fu, S.-J.Li, J.Xu et al., Langmuir, 27, 672 (2011).
https://doi.org/10.1021/la104524k
 
23. J.Cho, K.Char, J.-D.Hong et al., Adv. Mater., 13, 1076 (2001).
https://doi.org/10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M
 
24. S.-S.Lee, J.-D.Hong, C.H.Kim et al., Macromolecules, 34, 5358 (2001).
https://doi.org/10.1021/ma0022304
 
25. A.V.Sorokin, N.V.Pereverzev, I.I.Grankina et al., J. Phys. Chem. C, 119, 27865 (2015).
https://doi.org/10.1021/acs.jpcc.5b09940
 
26. I.Renge, U.P.Wild, J. Phys. Chem. A, 101, 7977 (1997).
https://doi.org/10.1021/jp971371d
 
27. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, Boston, MA (2006).
https://doi.org/10.1007/978-0-387-46312-4
 
28. Y.V.Malyukin, A.V.Sorokin, V.P.Semynozhenko, Low Temp. Phys., 42, 429 (2016).
https://doi.org/10.1063/1.4955493
 
29. E.Leontidis, U.W.Suter, M.Schuetz et al., J. Am. Chem. Soc., 117, 7493 (1995).
https://doi.org/10.1021/ja00133a022
 
30. K.Saito, J. Phys. Chem. B, 103, 6579 (1999).
https://doi.org/10.1021/jp991082k
 
31. B.Laban, V.Vodnik, M.Dramicanin et al., J. Phys. Chem. C, 118, 23393 (2014).
https://doi.org/10.1021/jp507086g
 
32. A.Sorokin, R.Grynyov, I.Grankina et al., in: Proc. 2020 IEEE 10th Int. Conf. "Nanomaterials Appl. Prop. N. 2020 (2020).
 
33. A.V.Sorokin, I.Y.Ropakova, R.S.Grynyov et al., Dye. Pigment., 152, 49 (2018).
https://doi.org/10.1016/j.dyepig.2018.01.032
 

Current number: