Funct. Mater. 2022; 29 (3): 346-358.

doi:https://doi.org/10.15407/fm29.03.346

Influence of pressure on the critical temperature and resistivity of Y0.77Pr0.23Ba2Cu3O7-δ single crystals

G.Ya.Khadzhai1, Junyi Du1,2, Z.F.Nazyrov1, A.L.Solovyov1, N.R.Vovk1, R.V.Vovk1,3

1V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2School of Mathematical Sciences, Luoyang Normal University, 471934 Luoyang, China
3Ukrainian State University of Railway Transport, 7 Feyerbaha Sq., 61050 Kharkiv, Ukraine

Abstract: 

In the present work, we investigated the influence of high hydrostatic pressure up to 11 kbar on the conductivity in the basal ab-plane of Y1-xPrxBa2Cu3O7-δ single-crystalline samples medium-doped with praseodymium (x~0.23). It was found that, in contrast to the pure YBa2Cu3O7-δ with the optimal oxygen content, the application of high pressure leads to phase separation in the basal plane of Y0.77Pr0.23Ba2Cu3O7-δ single crystals. Possible mechanisms of the effect of praseodymium doping and high pressure on the two-step transition to the superconducting state are discussed. It was established that in the normal state, there is a conductivity of the metallic type, limited by the scattering of phonons (Bloch-Gruneisen regime) and defects. The fluctuation conductivity is considered within the Lorentz-Doniach model. Hydrostatic pressure, accompanied by a decrease in anisotropy, leads to a decrease in the residual and phonon resistances. The Debye temperature and coherence length are independent of pressure. The applicability of the McMillan formula in the presence of significant anisotropy is discussed. The excess conductivity Δσ(T) obeys an exponential temperature dependence in the broad temperature range Tf < T < T*. The dependence Δσ(T) ~ (1 - T/T*)expΔ*ab/T) is interpreted in terms of the mean-field theory, where T* is the mean-field temperature of transition to the pseudogap state; and the temperature dependence of the pseudogap is satisfactory described within the BCS-BEC crossover theory.

Keywords: 
YPrBaCuO single crystals, doping, hydrostatic pressure, anisotropy, excess conductivity, scattering, Debye temperature.
References: 
1. R.V.Vovk, A.L.Solovyov, Low Temperature Physics, 44, 81 (2018). 
https://doi.org/10.1063/1.5020905
 
2. L.Mendonca Ferreira, P.Pureur, H.A.Borges, P.Lejay, Phys. Rev. B, 69, 212505 (2004).
https://doi.org/10.1103/PhysRevB.69.212505
 
3. J.G.Bednorz, K.A.Muller, Zeitschrift fur Physik B - Condensed Matter, 64, 189 (1986).
https://doi.org/10.1007/BF01303701
 
4. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, B.V.Grinyov, Funct. Mater., 27, 703 (2020).
https://doi.org/10.15407/fm27.04.703
5. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, B.V.Grinyov, Funct. Mater., 28, 415 (2021).
https://doi.org/10.15407/fm28.03.415
6. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011).
https://doi.org/10.1007/s10948-010-0823-8
 
7. M.Akhavan, Physica B, 321, 265 (2002).
https://doi.org/10.1016/S0921-4526(02)00860-8
 
8. R.V.Vovk, M.A.Obolenskiy, A.A.Zavgorodniy et al., Physica B, 404, 3516 (2009).
https://doi.org/10.1016/j.physb.2009.05.047
 
9. M.K.Wu, J.R.Ashburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987).
https://doi.org/10.1103/PhysRevLett.58.908
 
10. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk et al., Low Temperature Physics, 23, 962 (1997).
https://doi.org/10.1063/1.593511
 
11. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Appl. Phys. A, 117, 997 (2014). 
https://doi.org/10.1007/s00339-014-8670-2
 
12. R.V.Vovk, Z.F.Nazyrov, L.I.Goulatis, A.Chroneos, Journal of Low Temperature Physics, 170, 216 (2013). 
https://doi.org/10.1007/s10909-012-0755-8
 
13. G.Ya.Khadzhai, N.R.Vovk, R.V.Vovk, Low Temperature Physics, 40, 488 (2014). 
https://doi.org/10.1063/1.4881197
 
14. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Communications, 190, 18 (2014). 
https://doi.org/10.1016/j.ssc.2014.04.004
 
15. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Current Applied Physics, 14, 1779 (2014).
https://doi.org/10.1016/j.cap.2014.10.002
 
16. R.V. Vovk, N.R.Vovk, A.V.Samoilov et al., Solid State Communications, 170, 6 (2013). 
https://doi.org/10.1016/j.ssc.2013.07.011
 
17. A.L.Solovjov, E.V.Petrenko, L.V.Omelchenko et al., Scientific Reports, 9, 9274 (2019).
https://doi.org/10.1038/s41598-019-45286-w
 
18. D.A.Lotnyk, R.V.Vovk, M.A.Obolenskii et al., Journal of Low Temperature Physics, 161, 387 (2010). 
https://doi.org/10.1007/s10909-010-0198-z
 
19. D.D.Balla, A.V.Bondarenko, R.V.Vovk et al., Low Temp.Phys., 23, 777 (1997).
https://doi.org/10.1063/1.593445
 
20. A.L.Solovjov, L.V.Omelchenko, E.V.Petrenko et al., Scientific Reports, 9, 20424 (2019). 
https://doi.org/10.1038/s41598-019-55959-1
 
21. R.P.Gupta, M.Gupta, Phys. Rev. B, 51, 11760 (1995).
https://doi.org/10.1103/PhysRevB.51.11760
 
22. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Physica B, 422, 33 (2013). 
https://doi.org/10.1016/j.physb.2013.04.032
 
23. S.Sadewasser, J.S.Schilling, A.P.Paulicas, B.M.Veal, Phys. Rev. B, 61, 741 (2000).
https://doi.org/10.1103/PhysRevB.61.741
 
24. R.V.Vovk, G.Ya.Khadzhai, Z.F.Nazyrov et al., Physica B, 407, 4470 (2012).
https://doi.org/10.1016/j.physb.2012.07.049
 
25. W.-H.Li, S.Y.Wu, Y.-C.Lin et al., Phys. Rev. B, 60, 4212 (1999).
https://doi.org/10.1103/PhysRevB.60.4212
 
26. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Solid State Communication, 204, 64 (2015).
https://doi.org/10.1016/j.ssc.2014.12.008
 
27. G.Ya.Khadzhai, A.Chroneos, I.L.Goulatis et al., Journal of Low Temperature Physics, 203, 430 (2021). 
https://doi.org/10.1007/s10909-021-02590-y
 
28. J.M.Ziman, Electrons and Phonons, Oxford at the Clarendon Press (1960).
 
29. I.V.Alexandrov, A.F.Goncharov, S.M.Stishov, JETP Letters, 47, 428 (1988).
 
30. M.A.Ivanov, V.M.Loktev, Low Temperature Physics, 25, 996 (1999). 
https://doi.org/10.1063/1.593854
 
31. G.Ya.Khadzhai, C.R.Vovk, R.V.Vovk, Low Temperature Physics, 43, 1119 (2017). 
https://doi.org/10.1063/1.5004458
 
32. S.Kirkpatrick, Rev. Mod. Phys., 45, 574 (1973).
https://doi.org/10.1103/RevModPhys.45.574
 
33. J.Maza, F.Vidal, Phys. Rev. B, 43, 10560 (1991). 
https://doi.org/10.1103/PhysRevB.43.10560
 
34. H.A.Borges, M.A.Continentino, Solid State Commun., 80, 197 (1991).
https://doi.org/10.1016/0038-1098(91)90180-4
 
35. G.Lacayc, R.Hermann, G.Kaestener, Physica C, 192, 207 (1992).
https://doi.org/10.1016/0921-4534(92)90762-2
 
36. B.N.Rolov, V.E.Jurkiewicz, Physics Blurred Phase Transitions, House Rostov University (1983) [in Russian].
 
37. W.Kanzig, Ferroelectrics and Antiferroelectrics, Academic Press, New York (1957).
 
38. A.F.Prekul, V.A.Rassokhin, S.V.Yartsev, JETP Letters, 38, 408 (1983).
 
39. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 69, 144524 (2004).
https://doi.org/10.1103/PhysRevB.69.144524
 
40. A.J.Matthews, K.V.Kavokin, A.Usher et al., Phys. Rev. B, 70, 075317 (2004).
https://doi.org/10.1103/PhysRevB.70.075317
 
41. D.H.S.Smith, R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. B, 72, 054506 (1-7) (2005).
 
42. P.G.Curran, V.V.Khotkevych, S.J.Bending et al., Phys. Rev. B, 84, 104507 (2011).
https://doi.org/10.1103/PhysRevB.84.104507
 
43. N.Kuganathan, P.Iyngaran, R.Vovk, A.Chroneos, Scientific Reports, 9, 4394 (2019). 
https://doi.org/10.1038/s41598-019-40878-y
 
44. L.Colquit, J. Appl. Phys, 36, 2454 (1965). https://doi.org/10.1063/1.17145 10
 
45. T.Aisaka, M.Shimizu, J. Phys. Soc. Japan, 28, 646 (1970).
https://doi.org/10.1143/JPSJ.28.646
 
46. W.E.Lawrence, S.Doniach, Proc. of the Twelth Intern. Conference on Low Temperature Physics, ed. by E.Kanda, Academic Press of Japan, Kyoto (1971), p.361.
 
47. Jaja N.Victor, S.Natarajan, G.V.Subba Rao, Sol. St. Commun., 67, 51 (1988).
https://doi.org/10.1016/0038-1098(88)90013-0
 
48. G.Ya.Khadzhai, N.R.Vovk, R.V.Vovk, Fiz. Nizk. Temp., 47, 388 (2021). 
https://doi.org/10.1063/10.0004231
 
49. V.P.Glazkov, I.N.Goncharenko, V.A.Somenkov, Solid State Physics, 30, 3703 (1988).
 
50. A.Larkin, A.Varlamov, Theory of Fluctuations in Superconductors, OUP Oxford (2005).
https://doi.org/10.1093/acprof:oso/9780198528159.003.0013
 
51. H.Takahashi, N.Mori, T.Nakanishi et al., Rev. High Pressure Sci. Technol., 7, 388 (1998). 
https://doi.org/10.4131/jshpreview.7.388
 
52. N.V.Anshukova, Yu.V.Bugoslavskii, V.G.Veselago et al., JETP Letters, 48, 152 (1988).
 
53. R.C.Dynes, Solid State Communications, 10, 615 (1972). 
https://doi.org/10.1016/0038-1098(72)90603-5
 
54. P.B.Allen, R.C.Dynes, Phys. Rev.B, 12, 905 (1975).
https://doi.org/10.1103/PhysRevB.12.905
 
55. L.K.Aminov, V.A.Ivanshin, I.N.Kurkin et al., Physica C, 349, 30 (2001).
https://doi.org/10.1016/S0921-4534(00)01520-3
 
56. E.Babaev, H.Kleinert, Phys. Rev. B, 59, 12083 (1999).
https://doi.org/10.1103/PhysRevB.59.12083
 
57. T.Timusk, B.Statt, Rep. Progr. Phys., 62, 61 (1999).
https://doi.org/10.1088/0034-4885/62/1/002
 
58. D.D.Prokofiev, M.D.Volkov. Yu.A. Boykov, Fiz.Tv.Tela, 45, 1168, (2003)
 
59.Giapintzakis, D.M.Ginsberg, Phys. Rev. B, 39, 4258 (1989).
https://doi.org/10.1103/PhysRevB.39.4258
 
60. G.D.Chryssikos, E.I.Kamitsos, J.A.Kapoutsis et al., Physica C, 254, 44 (1995).
https://doi.org/10.1016/0921-4534(95)00553-6
 
61. R.V.Vovk, M.A.Obolenskii, Z.F.Nazyrov et al., J. Mater Sci.:Mater. Electron., 23, 1255 (2012).
https://doi.org/10.1007/s10854-011-0582-8

Current number: