Funct. Mater. 2022; 29 (3): 359-363.

doi:https://doi.org/10.15407/fm29.03.359

Lattice thermal conductivity of Pb1-xSnxTe solid solutions in the vicinity of the topological phase transition

E.I.Rogacheva, G.O.Nikolaenko, O.N.Nashchekina, G.V.Lisachuk

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The discovery of topological crystalline insulators (TCIs) with a metallic 2layer on the surface of a band-gap crystal and the prospects of their application in spintronics and quantum computation stimulate studies of the mechanisms of the transition to the TCI state. The semiconductor Pb1-xSnxTe solid solutions in the composition range corresponding to the inverted band structure were among the first discovered TCIs. One can suggest that due a strong electron-phonon interaction characteristic of these materials, the formation of a TCI layer is accompanied by some change in the properties determined by the lattice subsystem of the crystal. We measured the dependences of the lattice thermal conductivity λL of Pb1-xSnxTe on x in the vicinity of the TCI transition at different temperatures (170-300 K). In the λL(x) isotherms, we observed two peaks near x = 0.61 and x = 0.63, which evidences that the TCI transition consists of at least two stages. We suggest that one peak corresponds to the band inversion point and the other is associated with a structural self-organization taking place in the crystal, and either stimulates or accompanies the TCI transition. Thus, the transition to the TCI state in Pb1-xSnxTe is accompanied by changes in the lattice subsystem of the crystal.

Keywords: 
Pb<sub>1-x</sub>Sn<sub>x</sub>Te, topological crystalline insulator, band inversion, lattice thermal conductivity.
References: 
. Lead Chalcodenides: Physics and Applications, ed. D.R.Khokhlov, Taylor and Francis, New York (2003).
 
2. H.Zogg, A.Ishida, IV-VI (Lead Chalcogenide) Infrared Sensors and Lasers. In: Infrared Detectors and Emitters: Materials and Devices, ed. by P.Capper, C.T.Elliott, Electronic Materials Series, v.8, Springer, Boston MA (2001).
https://doi.org/10.1007/978-1-4615-1607-1_3
 
3. Materials Aspect of Thermoelectricity, ed. C.Uher, CRC Press, Boca Raton (2016).
 
4. J.O.Dimmock, I.Melngailis, A.J.Strauss, Phys. Rev. Lett., 16, 1193 (1966).
https://doi.org/10.1103/PhysRevLett.16.1193
 
5. J.R.Dixon, R.F.Bis, Phys. Rev., 176, 942 (1968).
https://doi.org/10.1103/PhysRev.176.942
 
6. E.Rogacheva, O.Nashchekina, A.Nikolaenko, Yu.Menshov, J. Physics: Conference Series, 864, 012042 (2017).
https://doi.org/10.1088/1742-6596/864/1/012042
 
7. S.-Y.Xu, C.Liu, N.Alidoust et al., Nat. Commun., 3, 1192 (1-9) (2012).
 
8. Y.Tanaka, T.Sato, K.Nakayama et al., Phys. Phys. Rev. B, 87, 155105 (2013).
https://doi.org/10.1103/PhysRevB.87.155105
 
9. C.Yan, J.Liu, Y.Zang et al., Phys. Rev. Lett., 112, 186801 (1-5) (2014).
https://doi.org/10.1103/PhysRevLett.112.235301
 
10. L.Fu, Phys. Rev. Lett., 106, 106802 (2011).
https://doi.org/10.1103/PhysRevLett.106.106802
 
11. N.Xu, Y.Xu, J.Zhu, Quantum Materials, 2, 51 (2017).
https://doi.org/10.1038/s41535-017-0054-3
 
12. N.N.Nikolaev, V.P.Potapov, A.P.Shotov, E.E.Yurchakevich, JETP Letters, 25, 168 (1977).
 
13. N.P.Seregin, S.A.Nemov, T.R.Stepanova et al., Semicond. Sci. Technol., 18, 334 (2003).
https://doi.org/10.1088/0268-1242/18/4/325
 
14. E.I.Rogacheva, A.A.Drozdova, O.N.Nashchekina et al., Appl. Phys. Lett., 94, 202111 (2009).
https://doi.org/10.1063/1.3139076
 
15. X.Gao, M.S.Daw, Phys. Rev. B, 77, 033103 (2008).
https://doi.org/10.1103/PhysRevB.77.033103
 
16. A.Lusakowski, P.Boguslawski, T.Story, Phys. Rev. B, 98, 125203 (2018).
https://doi.org/10.1103/PhysRevB.98.125203
 
17. D.Varjas, M.Fruchart, A.R.Akhmerov, P.M.Perez-Piskunow, Phys. Rev. Research, 2, 013229 (2020).
https://doi.org/10.1103/PhysRevResearch.2.013229

Current number: