Funct. Mater. 2022; 29 (3): 371-376.

doi:https://doi.org/10.15407/fm29.03.371

Modification of isoprene rubber with high molecular weight compounds in mixtures

S.A.Rahimova1, F.A.Amirov1, I.H.Movlayev1, Sh.M.Mammadov2, G.A.Mammadova2, P.I.Ismayilova2, R.F.Khankishiyeva1,2

1Azerbaijan State University of Oil and Industry
2Institute of Radiation Problems of the Azerbaijan National Academy of Sciences

Abstract: 

In the present work, the role of hexachloroparaxylene in modified rubbers (SKI-3) in the systems of SKI-3+SKN-40+ZnO and SKI-3+PVC+ZnO under the influence of peroxide was studied. Using physicochemical and spectral methods, the change in the molecular and spatial network of isoprene rubber SKI-3 in the presence of an accelerator for crosslinking of hexachloroparaxylene (HCPX) after peroxide crosslinking in an electric press in 423Kx40′ mode is shown. Formation of carbon-carbon chemical bonds in the SKI-3 rubber macromolecule for each system under study and the increase in the crosslinking yield and cross-linking efficiency with time were investigated. The behavior of high molecular weight polyvinyl chloride (PVC) and polyvinyl acetate (PVA) has been studied, and the radical reaction mechanism by EPR crosslinking has been confirmed.

Keywords: 
isoprene, polyvinyl chloride, polyvinyl acetate, crosslinking, molecular weight, rheology, viscometer, spectroscopy.
References: 
1. Sh.M.Mammadov, Fundamentals of Technology for the Synthesis, Processing and Vulcanization of NBR, Lap Lambert Academic Publishing, Germany (2015).
 
2. Sh.M.Mammadov, F.I.Yadreev, Nitrile Butadiene Rubber and Rubber Based on Them, Elm, Baku (2001).
 
3. A.S.Kuzminskii, S.M.Kavun, V.P.Kirpichev, Physical and Chemical Principles of Processing and Application of Elastomers, Khimiya, Moscow (1976).
 
4. P.J.Feory, Rehman, J. Chem. Phys., 11, 312 (1968).
https://doi.org/10.1016/0043-1648(68)90247-0
 
5. N.I.Avvakumova, L.A.Budarina, S.M.Divgun et al., Workshop on Chemistry and Physics of Polymers, Chemistry, Moscow (2007) [in Russian].
 
6. V.O.Reikhsfeld, L.N.Erkova, V.L.Ruban, Laboratory Workshop on Synthetic Rubbers, Chemistry, Moscow (1967) [in Russian].
 
7. N.D.Zakharov, N.V.Belozerov, Main Properties of Rubbers and Methods for Their Determination, Chemistry, Moscow (2006) [in Russian].
 
8. K.V.Nelson, Vibrational Spectra and Molecular Processes in Rubbers, Khimiya, Moscow (1989) [in Russian].
 
9. L.Bellamy, Infrared Spectra of Complex Molecules, Chemistry, Moscow (2000) [in Russian].
 
10. Ya.S.Lipatov, Physics-Chemistry of Multicomponent Systems, Naukova Dumka, Kyiv (2006).
 
11. D.Ingrad, Electron Paramagnetic Resonance in Free Organic Radicals, Chemistry, Moscow (1998).
 
12. K.A.Chernkov, Rubber and Rubber, 45 (2005).
 
13. M.E.Tsyganova, Vysokomol. Comm., 4, 145 (2012).
 
14. I.N.Pugacheva, N.S.Nikulina, S.S.Nikulin, Chemistry for Sustainable Development, 5, 641 (2016).
 
15. I.A.Tutorsky, E.E.Potapov, A.G.Schwartz, Chemical Modification of Elastomers, Chemistry, Moscow (2003) [in Russian].
 
16. Z.V.Onishchenko, Kauchuk i Rezina, 4, 23 (2008).
 
17. B.C.Grishin, Kauntsch. and Gummi. Kustst., 3, 222 (1993).
 
18. B.A.Dogadkin, A.A.Dontsov, V.A.Shershnev, Chemistry of Elastomers Chemistry, Moscow (1981) [in Eussian].
 
19. A.C.Estrin, JI.M.Kogan, V.A.Kroll, Modified Diene Elastomers. Synthetic Rubber, Chemistry, Leningrad (1983).
 
20. T.Guillaume, B.Bernard, A.Bruno, J. Progress in Polymer Science, 36, 191 (2011).
https://doi.org/10.1016/j.progpolymsci.2010.08.003
 
21. D.Feldman, A.Barbalata, Synthetic Polymers: Technology, Properties, Applications; Chapman & Hall, London (1996).
 
22. Klinkender, C.R.Handbook of Specialty Elastomers, CRC Press (2008).
https://doi.org/10.1201/9781420017670
 
23. J.George, K.T.Varguhese, S.Thomas, Polym., 41, 1507 (2000).
https://doi.org/10.1016/S0032-3861(99)00302-X
 
24. F.W.Barlow, Rubber Compounding: Principles, Materials and Techniques Rubber, Ed. Marcel Dekkar, New York (1993).

Current number: