Funct. Mater. 2022; 29 (3): 408-418.

doi:https://doi.org/10.15407/fm29.03.408

Using Brillouin's theorem for obtaining symmetry-preserving and symmetry-breaking solutions. Application to graphene quantum dots

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

The consistent Brillouin-theorem-based scheme is developed for obtaining numerical Hartree-Fock (HF) solutions at the semiempirical level. Our approach for getting corresponding HF results exploits a general configurational interaction singles procedure for which the compact formulation via only one-electron matrices in AO basis set is applied. The proposed algorithms demonstrate their reliability and feasibility for large-scale conjugated molecules. Particular focus is on finding HF symmetry-preserving and symmetry-breaking solutions of the charge density wave (CDW) type. Among the main systems studied here are graphene quantum dots of periacene type and singlet polyradical structures consisting of triangulene subunits (particularly, π-system of the recently synthesized triangulenic "nanostar") We show that formally incorrect HF solutions of CDW type (occurence of atomic net charges) implicitly reflect a decrease of atomic valencies in highly correlated alternant π-structures.

Keywords: 
configurational interaction, Hartree-Fock convergence and stability, graphene-like molecules, alternant symmety, π-electrons.
References: 
1. P.Tian, L.Tang., K.S.Teng, S.P.Lau, Mat. Today Chem., 10, 221 (2018).
https://doi.org/10.1016/j.mtchem.2018.09.007
 
2. X.-Y.Wang, X.Yao, K.M?llen, Sci. China Chem., 62, 1099 (2019).
https://doi.org/10.1007/s11426-019-9491-2
 
3. A.D.Guclu, P.Potasz, M.Korkusinski, P.Hawrylak, Graphene Quantum Dots, Springer, Berlin (2014).
https://doi.org/10.1007/978-3-662-44611-9
 
4. T.Clark, A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure and Energy Calculations, John Wiley, New York (1985).
 
5. K.N.Kudin, G.E.Scuseria, ESAIM: Math. Modelling Numer. Anal., 41, 281 (2007).
https://doi.org/10.1051/m2an:2007022
 
6. N.D.Wood, M.C.Payne, P.J.Hasnip, J. Phys.:Condensed Matter., 31, 453001 (2019)
https://doi.org/10.1088/1361-648X/ab31c0
 
S.Lehtola, S.Blockhuys, C.V.Alsenoy, Molecules, 25, 1218 (2020).
https://doi.org/10.3390/molecules25051218
 
7. M.M.Mestechkin, Instability of Hartree-Fock Equations and Stability of Molecules, Naukova Dumka, Kiev (1986) [in Russian].
 
8. R.Lefebvre, J. Chim. Phys., 54, 168 (1957).
https://doi.org/10.1051/jcp/1957540168
 
9. R.Lefebvre, in: Modern Quantum Chemistry, Istanbul Lectures, Pt I Orbitals, ed. by O.Sinanoglu (1965), p.125.
 
10. S.T.Epstein, The Variational Method in Quantum chemistry, Acad. Press, London (1974).
 
11. B.Levy, G.Berthier, Int. J. Quantum. Chem., 2, 307 (1968).
https://doi.org/10.1002/qua.560020210
 
12. F.Grein, T.C.Chang, Chem Phys. Lett., 12, 44 (1971).
https://doi.org/10.1016/0009-2614(71)80612-7
 
13. M.Godefroid, J.Lievin, J.-Y.Metz, Int. J. Quantum. Chem., 40, 243 (1991).
https://doi.org/10.1002/qua.560400207
 
14. B.N.Plakhutin, J. Chem. Phys., 153, 224110 (2020).
https://doi.org/10.1063/5.0035750
 
15. M.M.Mestechkin, L.S.Gutyra, Opt. Spektrosk., 26, 159 (1969).
https://doi.org/10.1159/000192603
 
16. M.M.Mestechkin, Density Matrix Method in the Theory of Molecules, Naukova Dumka, Kiev (1977) [in Russian].
 
17. R.McWeeny, Queen's Papers Pure and Appl. Math. (Kingston, Ontario), 11, 25 (1968)
 
P.D.Dacre,C.J.Watts, C.R.J.Williams, R.McWeeny, Mol. Phys., 30, 1203 (1975).
https://doi.org/10.1080/00268977500102741
 
18. A.V.Luzanov, Theor. Experim. Chem., 22, 489 (1987).
https://doi.org/10.1007/BF00522533
 
19. A.V.Luzanov, Funct. Materials, 24, 127 (2017).
https://doi.org/10.15407/fm24.01.127
 
20. R.McWeeny, Proc. Roy. Soc., A235, 496 (1956).
https://doi.org/10.1098/rspa.1956.0100
 
21. R.E.Stanton, J. Chem. Phys., 75, 5416 (1981).
https://doi.org/10.1063/1.441942
 
22. J.Cizek, J.Paldus, J. Chem. Phys., 47, 3976 (1967).
https://doi.org/10.1063/1.1701562
 
23. J.Paldus, J.Cizek, Phys. Rev., A2, 2268 (1970).
https://doi.org/10.1103/PhysRevA.2.2268
 
24. A.V.Luzanov, in: Nanooptics, Nanophotonics, Nanostructures, and Their Applications, NANO 2017, Springer Proceedings in Physics, v. 210, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2018), p.161.
 
25. Z.Bullard, E.C.Girao, J.R.Owens, Sci. Rep., 5, 7634 (2015).
https://doi.org/10.1038/srep07634
 
26. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).
https://doi.org/10.1063/1.4975196
 
27. A.V.Luzanov, O.V.Prezhdo, Int. J. Quantum. Chem., 102, 582 (2005).
https://doi.org/10.1002/qua.20438
 
28. K.Ruedenberg, C.W.Scherr, J. Chem. Phys., 21, 1565 (1953).
https://doi.org/10.1063/1.1699299
 
29. J.Hieulle, S.Castro, N.Friedrich et al., Angew. Chem. Int. Ed., 60, 25224 (2021).
https://doi.org/10.1002/anie.202108301
 
30. I.Sciriha, Electron. J. Linear Algebra, 16, 451 (2007).
https://doi.org/10.13001/1081-3810.1215
 
31. A.V.Luzanov, Funct. Mater., 27, 800 (2020).
 
32. A.A.Ovchinnikov, Theor. Chim. Acta, 47, 297 (1978).
https://doi.org/10.1007/BF00549259
 
33. E.Lieb, Phys. Rev. Lett., 62, 1201 (1989).
https://doi.org/10.1103/PhysRevLett.62.1201
 
34. X.Zhu, J.Guo, J.Zhang, E.W.Plummer, Adv. Phys.:X, 2, 622 (2017).
https://doi.org/10.1080/23746149.2017.1343098
 
35. A.V.Luzanov, in Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.
https://doi.org/10.1007/978-1-4899-7699-4_6
 
36. M.Head-Gordon, Chem. Phys. Lett., 372, 508 (2017).
https://doi.org/10.1016/S0009-2614(03)00422-6
 
37. A.V.Luzanov, Funct. Materials, 21, 437 (2014).
https://doi.org/10.15407/fm21.04.437
 
38. T.Yamada, S.Hirata, J. Chem. Phys., 143, 114112 (2015).
https://doi.org/10.1063/1.4929354
 
39. W.Small, E.J.Sundstrom, M.Head-Gordon, J. Chem. Phys., 142, 024104 (2015).
https://doi.org/10.1063/1.4905120
 
40. M.M.Mestechkin, G.E.Whyman, V.Klimo, J.Tino, Spin-Extended Hartree-Fock Method and Its Applications to Molecules, Naukova Dumka, Kiev (1983) [in Russian].
 
41. C.A.Jimenez-Hoyos, T.M.Henderson, T.Tsuchimochi, G.E.Scuseria, J. Chem. Phys., 136, 164109 (2012).
https://doi.org/10.1063/1.4705280
 
42. Y.G.Smeyers, L.Doreste-Suarez, Int. J. Quantum. Chem., 7, 678 (1973).
https://doi.org/10.1002/qua.560070406
 
43. V.Botella, O.Castano, P.Fernandez-Serra, Y.G.Smeyers, Chem. Phys. Lett., 219, 497 (1994).
https://doi.org/10.1016/0009-2614(94)00112-X
 
44. D.R.Yarkony, Chem. Phys. Lett., 77, 634 (1980).
https://doi.org/10.1016/0009-2614(81)85223-2
 
45. Yu.G.Khait, Yu.V.Puzanov, H.-J.Werner, J. Mol.Struct. (Theochem), 398-399, 101 (1997).
https://doi.org/10.1016/S0166-1280(97)00036-5
 
46. D.A.Kreplin, P.J.Knowles, H.-J.Werner, J. Chem. Phys., 152, 074102 (2020).
https://doi.org/10.1063/1.5142241
 
47. B.Helmish-Paris, J. Chem. Phys., 154, 164104 (2021).
https://doi.org/10.1063/5.0040798
 
48. W.H.Adams, Phys. Rev., 127, 1650 (1962).
https://doi.org/10.1103/PhysRev.127.1650
 
49. B.N.Partlett, The Symmetric Eigenvalue Problem, Prentice Hall, New York (1980).
 
 
   

 

Current number: