Funct. Mater. 2022; 29 (3): 419-428.

doi:https://doi.org/10.15407/fm29.03.419

Formation of a through conductive inclusion in a layered sample with sector conductive inclusions in single layers. Probability of a through inclusion appearance

R.Ye. Brodskii1,2, T.V. Kulik3

1Institute for Single Crystals, National Academy of Science of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
2V.N. Karazin Kharkiv National University, sqr. Svobody 4, Kharkiv, 61022, Ukraine
3Institute for Single Crystals, National Academy of Science of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine

Abstract: 

The paper presents the results of studying the formation of a through conductive inclusion in a layered sample for the case of sector conductive inclusions in single layers. The distribution of inclusions in the layers is uniform and independent in different layers. The values of the probability of occurrence of a through conductive inclusion are obtained for various values of the system parameters - the size of inclusions in layers, their number, and the number of layers. The dependences of this probability on the average filling of the layer with the conducting phase are obtained. Percolation threshold values are obtained.

Keywords: 
Through conductive inclusion, sector inclusions in layers, percolation
References: 
1. Dickison, M., Havlin, S. & Stanley, H. E., Phys. Rev. E 85, 066109 (2012).
https://doi.org/10.1103/PhysRevE.85.066109
 
2. Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P. \& Paczuski, M., EPL, 97, 16006 (2012).
https://doi.org/10.1209/0295-5075/97/16006
 
3. Clusella, P., Grassberger, P., Perez-Reche, F. J. & Politi, A., Phys. Rev. Lett., 117, 208301 (2016).
https://doi.org/10.1103/PhysRevLett.117.208301
 
4. C.-W. Nan, Y. Shen, Jing Ma, Rev. Mater. Res., 40, 131, (2010).
https://doi.org/10.1146/annurev-matsci-070909-104529
 
5. Sergey Marchenko, J. J. van Pelt Ward, Claremar Bjorn, Pohjola Veijo, Pettersson Rickard, Machguth Horst, Reijmer Carleen, Frontiers in Earth Science, 5 (2017)
https://doi.org/10.3389/feart.2017.00016
 
6. Eva Kroener, Mutez Ali Ahmed, and Andrea Carminati, Phys. Rev. E, 91, 042706 (2015)
https://doi.org/10.1103/PhysRevE.91.042706
 
7. Renat K. Akhunzhanov, Andrei V. Eserkepov, Yuri Yu. Tarasevich, J. Phys. A: Math. Theor., 55, 20, 204004 (2022).
https://doi.org/10.1088/1751-8121/ac61b8
 
8. Dominique Jeulin and Maxime Moreaud, Image Analysis and Stereology, 26(3), 121 (2007).
https://doi.org/10.5566/ias.v26.p121-127
 
9. Anatoly Golovnev and Matthew E. Suss, J. Chem. Phys., 149, 144904 (2018)
https://doi.org/10.1063/1.5041326
 
10. D. Sangare, P. M. Adler, Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 79 (5 Pt 1), 052101 (2009)
https://doi.org/10.1103/PhysRevE.79.052101
 
11. Johan Tykesson, David Windisch, Probability Theory and Related Fields, 154, 1, 165, (2012)
https://doi.org/10.1007/s00440-011-0366-3
 
12. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A., Nat. Phys., 12, 901, (2016)
https://doi.org/10.1038/nphys3865
 
13. Yan-Yun Cao, Run-Ran Liu, Chun-Xiao Jia, Bing-Hong Wang, Communications in Nonlinear Science and Numerical Simulation, 92, 105492 (2021)
https://doi.org/10.1016/j.cnsns.2020.105492
 
14. Liu, RR., Eisenberg, D.A., Seager, T.P. et al., Sci. Rep., 8, 2111 (2018)
https://doi.org/10.1038/s41598-018-20019-7
 
15. Wang Xiao Juan, Guo Shi Ze, Jin Lei, Wang Zhen, Physica A: Statistical Mechanics and its Applications, 471, 233, (2017)
https://doi.org/10.1016/j.physa.2016.11.051
 
16. Santoro, Andrea and Nicosia, Vincenzo, Phys. Rev. Research, 2, 3, 033122 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033122
 
17. R.Ye. Brodskii, Funct. Mater., 27 (1), 159 (2019). 
https://doi.org/10.15407/fm27.01.170
 

Current number: