Funct. Mater. 2022; 29 (3): 443-450.

doi:https://doi.org/10.15407/fm29.03.443

Effect of surfactant concentration in swift and facile one-pot synthesis of nano-crystalline Cu2O powder

Chandrashekhar M. Mahajan, Sachin S. Sawant

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune - 411037, Maharashtra, India

Abstract: 

Nanocrystalline Cu2O powders were synthesized through a facile and swift one pot synthesis in the presence of surfactant polyvinylpyrrolidone (PVP). The PVP solution molarity was varied from 0.4-0.8 mmol before mixing the precursors to investigate its effect on the structure, morphology, and optical properties of Cu2O nano-crystallites. The XRD analysis confirms the formation of the cubic phase of nanocrystalline Cu2O by diffraction peaks associated with (110), (111), (200), (220), (311) and (222) crystal planes. The average crystallite size decreases from 23 nm to 14 nm due to an increase in the PVP molarity. In X-ray phase analysis of nanocrystalline powders obtained using solutions of PVP 0.4 mmol and 0.8 mmol, negligible traces of Cu and CuO were found. SEM analysis shows the formation of nanoparticles with decreasing size due to an increase in the PVP molarity. The FTIR spectra show characteristic bands related to molecular vibrations of H-OH stretching, H-OH bending and Cu-O vibration. UV-VIS spectra show an absorption peak around λ = 470 nm for nano-Cu2O. The absorption peak shows a blue shift from λ = 472 nm to λ = 462 nm with a decrease in the crystallite size due to an increase in PVP concentration. The optical bandgap energy increases from 2.248 eV to 2.519 to 2.772 eV with an increase in the PVP molarity mainly due quantum confinement effects arising from the reduction in crystallite size.

Keywords: 
Copper oxide, molarity, nanoparticle, optical property, surfactant.
References: 
1. R.Chakraborty, H.Bhunia, S.Chatterjee, A.Pal, J. Solid State Chem., 281, 121021 (2020).
https://doi.org/10.1016/j.jssc.2019.121021
 
2. S.Singh, U.Kumar, B.Yadav et al., Results Phys., 15, 102772 (2019).
https://doi.org/10.1016/j.rinp.2019.102772
 
3. Y.Zhao, H.Liu, L.Shi et al., Sens. Actuators B, 315, 128155 (2020).
https://doi.org/10.1016/j.snb.2020.128155
 
4. T.Miyata, H.Tokunaga, K.Watanabe et al., Thin Solid Film, 697, 137825 (2020).
https://doi.org/10.1016/j.tsf.2020.137825
 
5. D.Osorio-Rivera, G.Torres-Delgado, R.Castanedo-P?rez et al., Mater. Res. Bull., 122, 110669 (2020).
https://doi.org/10.1016/j.materresbull.2019.110669
 
6. Y.Ren, X.He, W.Sui et al., J. Mater. Res. Technol., 9, 8081 (2020).
https://doi.org/10.1016/j.jmrt.2020.05.086
 
7. Y.Wang, L.Cao, J.Li et al., Chem. Eng., 391, 123597 (2020).
https://doi.org/10.1016/j.cej.2019.123597
 
8. V.Spiridonov, X.Y.Liu, S.Zezin et al., J. Organomet. Chem., 914, 121180 (2020).
https://doi.org/10.1016/j.jorganchem.2020.121180
 
9. N.Omrania, A.Nezamzadh-Ejhieh, J. Photoch. Photobio. A, 389, 112223 (2020).
https://doi.org/10.1016/j.jphotochem.2019.112223
 
10. F.Zhang, Y.Li, M.Qi et al., Appl. Catal. B, 268, 118380 (2020).
https://doi.org/10.1016/j.apcatb.2019.118380
 
11. M.Mallik, S.Moniaa, M.Gupta et al., J. Alloy Compd., 829 (2020).
https://doi.org/10.1016/j.jallcom.2020.154623
 
12. Ji Ma, C.Liu, J. Colloid Interface Sci., 594, 352 (2021).
https://doi.org/10.1016/j.jcis.2021.03.028
 
13. S.Mao, X.Sun, H.Qi, Z.Sun, Sci. Total Environ., 793, 148492 (2021).
https://doi.org/10.1016/j.scitotenv.2021.148492
 
14. A.Zheng, S.Sabidi, T.Ohno et al., Chemosphere, 286 Part 2, 131731 (2022).
https://doi.org/10.1016/j.chemosphere.2021.131731
 
15. Y.Liu, H.Turley, J.Tumbleston et al., Appl. Phys. Lett., 98, 162105 (2011).
https://doi.org/10.1063/1.3579259
 
16. S.S.Sawant, A.D.Bhagwat, C.M.Mahajan, J. Nano-Electron. Phys., 8, 01035 (2016).
https://doi.org/10.21272/jnep.8(1).01035
 
17. Y.Bai, T.Yang, Q.Gu et al., Powder Technol., 227, 35 (2012).
https://doi.org/10.1016/j.powtec.2012.02.008
 
18. L.Gau, C.Murphy, Nano Lett., 3, 231 (2003).
https://doi.org/10.1021/nl0258776
 
19. J.Prajapati, D.Das, S.Katlakunta et al., Inorganica Chim. Acta, 515, 120069 (2021).
https://doi.org/10.1016/j.ica.2020.120069
 
20. M.Mannarmannan, K.Biswas, Chemistry Select, 6, 3534 (2021).
https://doi.org/10.1002/slct.202004471
 
21. W.Huang, M.Lyu, Y.Yang, M.Huang, J. Am. Chem. Soc., 134, 1261 (2012).
https://doi.org/10.1021/ja209662v
 
22. H.Kuo, H.Huang, J. Phys. Chem. C., 112, 18355 (2008).
https://doi.org/10.1021/jp8060027
 
23. F.Luo, D.Wu, L.Gao et al., J. Cryst. Growth., 285, 534 (2005)
https://doi.org/10.1016/j.jcrysgro.2005.09.032
 
24. L.Gou, C.Murphy, J. Mater. Chem., 14, 735 (2004).
https://doi.org/10.1039/b311625e
 
25. Y.Sui, W.Fu, H.Yang et al., Cryst. Growth Des., 10, 99 (2010).
https://doi.org/10.1021/cg900437x
 
26. A.Mishra, D.Pradhan, Cryst. Growth Des., 16, 3688 (2016).
https://doi.org/10.1021/acs.cgd.6b00186
 
27. S.Jadhav, D.Nikam, V.Khot et al., New J. Chem., 37, 3121 (2013).
https://doi.org/10.1039/c3nj00554b
 
28. S.S.Sawant, A.D.Bhagwat, C.M.Mahajan, J. Nano- Electron. Phys., 8, 01036 (2016).
https://doi.org/10.21272/jnep.8(1).01036
 
29. S.S.Sawant, C.M.Mahajan, J. Nano-Electron. Phys., 14, 02011 (2022).
https://doi.org/10.21272/jnep.14(2).02011
 
30. R.D.Prabu, S.Valanarasu, V.Ganesh et al., Surface and Interface Analysis, 50, 346 (2018).
https://doi.org/10.1002/sia.6374
 
31. A.Mahmoud, K.Al?Qahtani, S.Alfaij et al., Sci. Rep., 11, 12547 (2021).
https://doi.org/10.1038/s41598-021-91093-7
 
32. Y.Bai, T.Yang, Q.Gu et al., Powder Technol., 227, 35 (2012).
https://doi.org/10.1016/j.powtec.2012.02.008
 
33. L.Gau, C.Murphy, Nano Lett., 3, 231 (2003).
https://doi.org/10.1021/nl0258776
 
34. R.Swarnkar, S.Singh, R.Gopal, Bull. Mater. Sci., 34, 1363 (2011).
https://doi.org/10.1007/s12034-011-0329-4
 

 

Current number: