Funct. Mater. 2022; 29 (3): 443-450.
Effect of surfactant concentration in swift and facile one-pot synthesis of nano-crystalline Cu2O powder
Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune - 411037, Maharashtra, India
Nanocrystalline Cu2O powders were synthesized through a facile and swift one pot synthesis in the presence of surfactant polyvinylpyrrolidone (PVP). The PVP solution molarity was varied from 0.4-0.8 mmol before mixing the precursors to investigate its effect on the structure, morphology, and optical properties of Cu2O nano-crystallites. The XRD analysis confirms the formation of the cubic phase of nanocrystalline Cu2O by diffraction peaks associated with (110), (111), (200), (220), (311) and (222) crystal planes. The average crystallite size decreases from 23 nm to 14 nm due to an increase in the PVP molarity. In X-ray phase analysis of nanocrystalline powders obtained using solutions of PVP 0.4 mmol and 0.8 mmol, negligible traces of Cu and CuO were found. SEM analysis shows the formation of nanoparticles with decreasing size due to an increase in the PVP molarity. The FTIR spectra show characteristic bands related to molecular vibrations of H-OH stretching, H-OH bending and Cu-O vibration. UV-VIS spectra show an absorption peak around λ = 470 nm for nano-Cu2O. The absorption peak shows a blue shift from λ = 472 nm to λ = 462 nm with a decrease in the crystallite size due to an increase in PVP concentration. The optical bandgap energy increases from 2.248 eV to 2.519 to 2.772 eV with an increase in the PVP molarity mainly due quantum confinement effects arising from the reduction in crystallite size.
1. R.Chakraborty, H.Bhunia, S.Chatterjee, A.Pal, J. Solid State Chem., 281, 121021 (2020). https://doi.org/10.1016/j.jssc.2019.121021 |
||||
2. S.Singh, U.Kumar, B.Yadav et al., Results Phys., 15, 102772 (2019). https://doi.org/10.1016/j.rinp.2019.102772 |
||||
3. Y.Zhao, H.Liu, L.Shi et al., Sens. Actuators B, 315, 128155 (2020). https://doi.org/10.1016/j.snb.2020.128155 |
||||
4. T.Miyata, H.Tokunaga, K.Watanabe et al., Thin Solid Film, 697, 137825 (2020). https://doi.org/10.1016/j.tsf.2020.137825 |
||||
5. D.Osorio-Rivera, G.Torres-Delgado, R.Castanedo-P?rez et al., Mater. Res. Bull., 122, 110669 (2020). https://doi.org/10.1016/j.materresbull.2019.110669 |
||||
6. Y.Ren, X.He, W.Sui et al., J. Mater. Res. Technol., 9, 8081 (2020). https://doi.org/10.1016/j.jmrt.2020.05.086 |
||||
7. Y.Wang, L.Cao, J.Li et al., Chem. Eng., 391, 123597 (2020). https://doi.org/10.1016/j.cej.2019.123597 |
||||
8. V.Spiridonov, X.Y.Liu, S.Zezin et al., J. Organomet. Chem., 914, 121180 (2020). https://doi.org/10.1016/j.jorganchem.2020.121180 |
||||
9. N.Omrania, A.Nezamzadh-Ejhieh, J. Photoch. Photobio. A, 389, 112223 (2020). https://doi.org/10.1016/j.jphotochem.2019.112223 |
||||
10. F.Zhang, Y.Li, M.Qi et al., Appl. Catal. B, 268, 118380 (2020). https://doi.org/10.1016/j.apcatb.2019.118380 |
||||
11. M.Mallik, S.Moniaa, M.Gupta et al., J. Alloy Compd., 829 (2020). https://doi.org/10.1016/j.jallcom.2020.154623 |
||||
12. Ji Ma, C.Liu, J. Colloid Interface Sci., 594, 352 (2021). https://doi.org/10.1016/j.jcis.2021.03.028 |
||||
13. S.Mao, X.Sun, H.Qi, Z.Sun, Sci. Total Environ., 793, 148492 (2021). https://doi.org/10.1016/j.scitotenv.2021.148492 |
||||
14. A.Zheng, S.Sabidi, T.Ohno et al., Chemosphere, 286 Part 2, 131731 (2022). https://doi.org/10.1016/j.chemosphere.2021.131731 |
||||
15. Y.Liu, H.Turley, J.Tumbleston et al., Appl. Phys. Lett., 98, 162105 (2011). https://doi.org/10.1063/1.3579259 |
||||
16. S.S.Sawant, A.D.Bhagwat, C.M.Mahajan, J. Nano-Electron. Phys., 8, 01035 (2016). https://doi.org/10.21272/jnep.8(1).01035 |
||||
17. Y.Bai, T.Yang, Q.Gu et al., Powder Technol., 227, 35 (2012). https://doi.org/10.1016/j.powtec.2012.02.008 |
||||
18. L.Gau, C.Murphy, Nano Lett., 3, 231 (2003). https://doi.org/10.1021/nl0258776 |
||||
19. J.Prajapati, D.Das, S.Katlakunta et al., Inorganica Chim. Acta, 515, 120069 (2021). https://doi.org/10.1016/j.ica.2020.120069 |
||||
20. M.Mannarmannan, K.Biswas, Chemistry Select, 6, 3534 (2021). https://doi.org/10.1002/slct.202004471 |
||||
21. W.Huang, M.Lyu, Y.Yang, M.Huang, J. Am. Chem. Soc., 134, 1261 (2012). https://doi.org/10.1021/ja209662v |
||||
22. H.Kuo, H.Huang, J. Phys. Chem. C., 112, 18355 (2008). https://doi.org/10.1021/jp8060027 |
||||
23. F.Luo, D.Wu, L.Gao et al., J. Cryst. Growth., 285, 534 (2005) https://doi.org/10.1016/j.jcrysgro.2005.09.032 |
||||
24. L.Gou, C.Murphy, J. Mater. Chem., 14, 735 (2004). https://doi.org/10.1039/b311625e |
||||
25. Y.Sui, W.Fu, H.Yang et al., Cryst. Growth Des., 10, 99 (2010). https://doi.org/10.1021/cg900437x |
||||
26. A.Mishra, D.Pradhan, Cryst. Growth Des., 16, 3688 (2016). https://doi.org/10.1021/acs.cgd.6b00186 |
||||
27. S.Jadhav, D.Nikam, V.Khot et al., New J. Chem., 37, 3121 (2013). https://doi.org/10.1039/c3nj00554b |
||||
28. S.S.Sawant, A.D.Bhagwat, C.M.Mahajan, J. Nano- Electron. Phys., 8, 01036 (2016). https://doi.org/10.21272/jnep.8(1).01036 |
||||
29. S.S.Sawant, C.M.Mahajan, J. Nano-Electron. Phys., 14, 02011 (2022). https://doi.org/10.21272/jnep.14(2).02011 |
||||
30. R.D.Prabu, S.Valanarasu, V.Ganesh et al., Surface and Interface Analysis, 50, 346 (2018). https://doi.org/10.1002/sia.6374 |
||||
31. A.Mahmoud, K.Al?Qahtani, S.Alfaij et al., Sci. Rep., 11, 12547 (2021). https://doi.org/10.1038/s41598-021-91093-7 |
||||
32. Y.Bai, T.Yang, Q.Gu et al., Powder Technol., 227, 35 (2012). https://doi.org/10.1016/j.powtec.2012.02.008 |
||||
33. L.Gau, C.Murphy, Nano Lett., 3, 231 (2003). https://doi.org/10.1021/nl0258776 |
||||
34. R.Swarnkar, S.Singh, R.Gopal, Bull. Mater. Sci., 34, 1363 (2011). https://doi.org/10.1007/s12034-011-0329-4 |
||||