Funct. Mater. 2022; 29 (3): 462-467.

doi:https://doi.org/10.15407/fm29.03.462

The use of ferrite composites for waste water purification from organic dyes

V.V.Datsenko1, E.B.Khobotova1, V.M.Kolodiazhnyi1, D.O.Lisin2

1Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

The photocatalytic and sorption properties of the Cu-Zn-ferrite composites (FCs) were studied spectrophotometrically during the purification of solutions from methylviolet MV, methylene blue MB, and Congo red CR. It is shown that the first-order reaction is observed throughout the entire time interval of the purification process when the mechanism is changed from the predominant photocatalysis to adsorption within 3-5 h. The purification efficiency (E) and activity of individual FCs vary depending on the type of dye and the ferrite composition. The specific activity of FC is high when purified from all dyes at a mass ratio of "FC-to-dye" n≥500. Optimal n varies within 700-1370. Anionic character of CR reduces the purification efficiency E in comparison with MV and MB. The reuse of FCs with a reduced E is advisable in the case of prolonged contact of FC with colored solutions in sedimentation tanks. The mathematical model of the cleaning process was created using the MATLAB application package (Toolbox subsystem). Optimization of the total cleaning processes was carried out by deriving third-order regression equations "E-n-time" with an extended range of optimal values of the process parameters.

Keywords: 
ferritic composite, organic dyes, photocatalysis, sorption, efficiency, mathematical model.
References: 

1. T.V.Lukyanenko, M.V.Nikolenko, L.V.Dmitrikova et al., J. of Chem. and Techn., 28, 2 (2020). https://dx.doi.org/10.15421/ 082023

2. E.B.Khobotova, I.V.Hraivoronska, Chernye Metaly, 7,  (2019).

3. E.Khobotova, I.Hraivoronska, Iu.Kaliuzhna, M.Ihnatenko, ChemChemTech., 64, 6 (2021). https://dx.doi.org/10.6060/ivkkt.20216406.6

4. E.B.Khobotova, I.V.Hraivoronska, M.I.Ihnatenko, Iu.S.Kaliuzhna, ChemChemTech., 63, 8 (2020). https://dx.doi.org/10.6060/ivkkt. 20206308.6197

5. D.V.Tarnovsky, M.M.Tsyba, L.SKuznetsova et al., J. of Chem. and Techn., 29, 1 (2021). https://dx.doi.org/10.15421/jchemtech.v29i2.232199

6. L.A.Frolova, J. of Chem. and Techn., 29, 3 (2021).

https://dx.doi.org/10.15421/ jchemtech.v29i3.233699 2

7. L.A.Frolova, T.V.Hrydnieva, J. of Chem. and Techn., 28, 2 (2020).

https://dx.doi.org/ 10.15421/082022

8. P.Garcia-Munoz, F.Fresno, V.Pena O'shea et al., Topics in Current Chemistry, Springer, 378, 1 (2020).

9. V.I.Romanovsky, D.M.Kulichik, M.V.Pilipenko, Vodoochistkav, 4, (2019).

10. N.K.Gupta, Ya.Ghafari, S.Kim et al., Scientific Reports, 10, 4942 (2020).

https://doi.org/10.1038/s41598-020-61930-2

11. A.Ulyankin, I.Leontyev, M.Avramenko et al., Materials Science in Semiconductor Processing, 76,  (2018).

12. A.Di Paola, E.Garcia-Lopez, G.Marci, L.Palmisano, J. Hazard. Mater., 211,  (2012). https://dx.doi.org/10.1016/j.jhazmat. 2011.11.050

13. A.Ajmal, I.Majeed, R.N.Malik et al., RSC Adv., 4, ??? (2014). https://dx.doi.org/ 10.1039/b000000x

14. H.Chun, T.Yuchao, T.Hongxiao, Catal. Today, 90,  (2004).

https://doi.org/10.1016/j.cattod.2004.04.042

15. M.Di Paola, P.Zaccagnino, G.Montedoro et al., J. Bioenerg. Biomembr., 36, (2004). https://doi.org/10.1023/b:jobb.0000023619.97392.0c

16. M.N.Chong, B.Jin, C.W.Chow, C.Saint, Water Res., 44, (2010).

https://doi.org/ 10.1016/j.watres.2010.02.039

17. X.Wang, J.Jia, Y.Wang, J. Hazard. Mater., 185, 1 (2011).

https://doi.org/10.1016/ j.jhazmat.2010.09.036

18. X.Chen, W.Wang, H.Xiao et al., Chem. Eng. J., 193-194, (2012).

https://doi.org/ 10.1016/j.cej.2012.04.033

19. S.Kaur, V.Singh, J. Hazard. Mater., 141 (2007).

https://doi.org/10.1016/j.jhazmat. 2006.06.123

20. M.Saquib, T.M.Abu, M.Haque, M.Muneer, J. Environ. Manag., 88, 2 (2008).

https:// doi.org/ 10.1016/j.jenvman.2007.03.012

21. V.Larin, V.Datsenko, L.Egorova et al., French-Ukrainian J. of Chem., 08, 1 (2020).

22. E.B.Khobotova, V.V.Datsenko, O.V.Vankevich, Ukraine Patent No. 149385U. Kharkiv, Ukraine, Ukrainian Institute of Industrial Property (2021).

23. V.V.Datsenko, E.B.Khobotova, V.I.Larin, Patent application for an invention No. 202104699 (2021).

24. E.B.Khobotova, V.V.Datsenko, O.V.Vankevich, Patent application for an invention No. 202104697 (2021).

25. K.B.Dhanalakshmi., S.Anandan, J. Madhavan, P.Maruthamuthu, Sol. Energy Mater. Sol. Cells, 92, ??? (2008). https://doi.org/ 10.1016/j.solmat.2007.10.009

Current number: