Funct. Mater. 2022; 29 (4): 475-480.

doi:https://doi.org/10.15407/fm29.04.475

The possibility of realizing room-temperature superconductivity in high-Tc cuprates in their two-dimensional sandwich layers

S.Dzhumanov1, A.L.Solovjov2, R.V.Vovk3, B.V.Grinyov4, Sh.S.Djumanov5

1Institute of Nuclear Physics, Uzbek Academy of Sciences, Ulugbek, 100214 Tashkent, Uzbekistan
2B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
3The Faculty of Physics, V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine 4Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 61072 Kharkiv, Ukraine 5Tashkent State Technical University, 10095 Tashkent, Uzbekistan

Abstract: 

Based on the predictions of the theory of a superfluid Bose-liquid of unconventional (tightly-bound) Cooper pairs, we consider the possibility of realizing room-temperature superconductivity in distinctive high-Tc cuprate materials containing many grain boundaries,interfaces and planes in the layered blocks. We argue that such high-Tc materials (e.g., Bi/Pb-based high-Tc cuprates) are the most promising and have certain favorable properties, which can serve as a possible guide in the search for persisting room-temperature superconductivity maintained in two-dimensional (2D) regions (e.g. at planar sheets or plates). We show that the superconducting transition temperature Tc is much lower in the bulk of high-Tc cuprates than at planes in them; and the three-dimensional (3D) superconductivity in these materials is destroyed above the bulk Tc, while the 2D superconductivity is maintained at grain boundaries and interfaces and in the multiplate blocks up to room temperature at atmospheric pressure. We predict that the crossover from bulk to surface Bose-liquid superconductivity in the alternating 3D/2D sandwich layers might be possible route to room-temperature superconductivity in promising high-Tc cuprate materials. Various experiments on some families of high-Tc cuprates confirm the theory of Bose-liquid superconductivity and the signs of the superconducting transitions at temperatures well above the bulk Tc and sometimes close to room temperature.

Keywords: 
high-T<sub>c</sub> cuprates, Bose superfluids, grain boundaries, interfaces and planes/sheets, three- and two-dimensional sandwich layers, room-temperature superconductivity.
References: 
1. J.G.Bednorz, K.A.Muller, Z. Phys., B64, 189 (1986).
https://doi.org/10.1007/BF01303701
 
2. M.K.Wu, J.R.Ashburn, C.J.Tomg et al., Phys. Rev. Lett., 58, 908 (1987).
https://doi.org/10.1103/PhysRevLett.58.908
 
3. R.M.Hasen, C.T.Prewitt, R.J.Angel et al., Phys. Rev. Lett., 60, 1174 (1988).
https://doi.org/10.1103/PhysRevLett.60.1174
 
4. A.Schilling, M.Cantoni, J.D.Guo, H.R.Ott, Nature, 363, 56 (1993).
https://doi.org/10.1038/363056a0
 
5. C.W.Chu, L.Gao, F.Chen et al., Nature, 365, 323 (1993).
https://doi.org/10.1038/365323a0
 
6. L.Gao, Y.Y.Xue, F.Chen et al., Phys. Rev., B50, 4260 (1994).
 
7. S.Dzhumanov, Int. J. Mod. Phys., B12, 2151 (1998).
https://doi.org/10.1142/S0217979298001289
 
8. V.L.Ginzburg, Usp. Fiz. Nauk, 175, 187 (2005).
https://doi.org/10.3367/UFNr.0175.200502f.0187
 
9. V.Z.Kresin, S.A.Wolf, Rev. Mod. Phys, 81, 481(2009).
https://doi.org/10.1103/RevModPhys.81.481
 
10. N.Takeshita, A.Yamamoto, A.Iyo, H.Eisaki, J. Phys. Soc. Jpn., 82, 023711 (2013).
https://doi.org/10.7566/JPSJ.82.023711
 
11. I.Bozovic, J.Wu, X.He, A.T.Bollinger, Quantum Stud.:Math. Found, DOI 10. 1007/5 40509-017-012-X.
 
12. D.D.Gulamova, A.V.Karimov, J.G.Chigvinadze et al., Zh. Tech. Fiz., 89, 583 (2019).
 
13. R.V.Vovk, A.L.Solovjov, Low Temp. Phys., 44, 81(2018).
https://doi.org/10.1063/1.5020905
 
14. A.P.Drozdov, P.P.Kong, V.S.Minkov et al., Nature, 569, 528 (2019).
https://doi.org/10.1038/s41586-019-1201-8
 
15. E. Snider, N.Dasenbrock-Gammon, R.Mebride et al., Nature, 586, 373 (2020).
https://doi.org/10.1038/s41586-020-2801-z
 
16. W.A.Little, Phys. Rev. A, 134, 1416 (1964).
https://doi.org/10.1103/PhysRev.134.A1416
 
17. V.L.Ginzburg, Phys. Lett., 13, 101 (1964).
https://doi.org/10.1016/0031-9163(64)90672-9
 
18. S.E.Inderhees, M.B.Salamon, N.Goldfeld et al., Phys. Rev. Lett., 60, 1178 (1988).
https://doi.org/10.1103/PhysRevLett.60.1178
 
19. T.Matsuzaki, M.Ido, N.Momono et al., J. Phys. Chem. Solids, 62, 29 (2001).
https://doi.org/10.1016/S0022-3697(00)00096-2
 
20. S.Dzhumanov, Superlattices and Microstructures, 21, 363 (1997).
https://doi.org/10.1006/spmi.1996.0401
 
21. S.Dzhumanov, Physica A, 517, 197 (2019).
https://doi.org/10.1016/j.physa.2018.11.006
 
22. M.Imada, A.Fujimori, Y.Takura, Rev. Mod. Phys., 70, 1039 (1998).
https://doi.org/10.1103/RevModPhys.70.1039
 
23. S.Dzhumanov, P.J.Baimatov, A.A.Baratov, P.K.Khabibullaev, Physica C, 254, 311 (1995).
https://doi.org/10.1016/0921-4534(95)00446-7
 
24. Ch.B.Lushchik, A.Ch.Lushchik, Decay of Electronic Exhitations with Defect Formation in Solids, Nauka, Moscow (1989).
 
25. S.Dzhumanov, P.K.Khabibullaev, Phys. Stat. Sol., B152, 395 (1989).
https://doi.org/10.1002/pssb.2221520203
 
26. S.Dzhumanov, Arxiv. 1912.12407.
 
27. J.G.Chigvinadze, S.M.Ashimov, J.V.Acrivos, D.D.Gulamova, Low Temp. Phys., 45, 386 (2019).
https://doi.org/10.1063/1.5093517
 
28. A.Ulug, B.Ulug, R.Yagbasan, Physica C, 235-240, 879 (1994).
https://doi.org/10.1016/0921-4534(94)91664-0
 
29. J.L.Tholence, L.Puech, A.Sulpice et al., Physica C, 235-240, 1545 (1994).
https://doi.org/10.1016/0921-4534(94)91998-4
 

Current number: