Funct. Mater. 2022; 29 (4): 488-493.

doi:https://doi.org/10.15407/fm29.04.488

Environment effect on emitting characteristics of laser dye DCM

V.V.Maslov1, O.M.Bezkrovna2, I.M.Pritula2

1O.Ya.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Acad. Proskury St., 61085 Kharkiv, Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The spectral, fluorescent, temporal, and lasing characteristics of the DCM laser dye in solutions and silica gel matrices were investigated to ascertain the influence of the dye surroundings on the processes of its energy relaxation in the excited state. Quantum yields of fluorescence Qfl and rate constants of radiative kr and nonradiative knr transitions both in solutions and silica gel matrices have been calculated. It was found that the microenvironment of the DCM molecule in a preliminarily annealed (PA) matrix most strongly affects the processes of nonradiative relaxation in the S1 state, which leads to their significant weakening. As a result, the quantum yield of fluorescence increases by 85 % compared to the methanol solution; at the same time, the specific yield energy of laser radiation increases almost twice. The analysis of DCM dye characteristics measured in the four media shows that the PA matrix has a greater stabilizing effect on the spatial structure of the dye molecule than bipolar solvent dimethyl sulfoxide.

Keywords: 
DCM laser dye, environment, nonradiative relaxations, silica gel, preliminary annealing, stabilizing effect.
References: 
1. A.Hamja, R.Florentin, S.Chenais, S.Forget, Appl. Phys. Lett., 120, 113301 (2022).
https://doi.org/10.1063/5.0083867
 
2. Y.Wan, H.Wang, H.Li et al., Opt. Express, 30, 8222 (2022).
https://doi.org/10.1364/OE.451428
 
3. T.Li, F.Li, C.Altuzarra et al., Appl. Phys. Lett., 116, 254001 (2020).
https://doi.org/10.1063/5.0010909
 
4. A.Hamja, S.Chenais, S.Forget, J. Appl. Phys., 128, 015501 (2020).
https://doi.org/10.1063/5.0008474
 
5. Y.Wan, L.Deng, Opt. Express, 27, 27103 (2019).
https://doi.org/10.1364/OE.27.027103
 
6. L.Chen, C.Zhao, L.Liu et al., Lab Chip, 20, 3757 (2020).
https://doi.org/10.1039/D0LC00742K
 
7. Z.Liu, L.Liu, Z.Zhu et al., Opt. Lett., 41, 4649 (2016).
https://doi.org/10.1364/OL.41.004649
 
8. P.S.Choubey, A.Sarkar, S.K.Varshney et al., J. OSA B, 37, 2505 (2020).
https://doi.org/10.1364/JOSAB.399091
 
9. M.M.Prenting, M.Shilikhin, T.Dreier et al., Appl. Opt.. 60, C98 (2021).
https://doi.org/10.1364/AO.419684
 
10. Z.Chen, Q.Zhow, H.Du et al., Photonics Res., 9, 865 (2021)
https://doi.org/10.1364/PRJ.412860
 
11. J.Lyu, X.Zhang, L.Cal et al., Photonics Res., 10, 2239 (2022).
https://doi.org/10.1364/PRJ.462588
 
12. F.G.Webster, W.C.McColing. U.S. patent #3,852,683 to Eastman Kodak Co., (1974).
 
13. P.R.Hammond, Optics Comm., 29, 331 (1979).
https://doi.org/10.1016/0030-4018(79)90111-1
 
14. I.M.Pritula, O.N.Bezkrovnaya, V.M.Puzikov et al.. Chap. 13 in Adv. Lasers. Springer Ser. in Opt. Sci.193, 199 (2015). @SPLIT = 15. V.V.Maslov, O.N.Bezkrovnaya, I.M.Pritula, J. Fluorescence, 29, 473 (2019).
https://doi.org/10.1007/s10895-019-02357-5
 
16. V.V.Maslov, O.N.Bezkrovna, I.M.Pritula, Appl. Phys. B, 127, 166 (2021).
https://doi.org/10.1007/s00340-021-07706-6
 
17. S.L.Bondarev, V.N.Knyukshto, V.I.Stepuro et al.. J. Apll. Spectroscopy., 71, 194 (2004).
https://doi.org/10.1023/B:JAPS.0000032874.60100.a0
 
18. M.Meyer, J.C.Mialocq, Optics Comm., 64, 264 (1987).
https://doi.org/10.1016/0030-4018(87)90390-7
 
19. M.Meyer, J.C.Mialocq, B.Perly, J. Phys. Chem., 94, 98 (1990).
https://doi.org/10.1021/j100364a015
 
20. J.M.Drake, M.L.Lesiecki, D.M.Camaioni, Chem. Phys. Lett., 113, 530 (1985).
https://doi.org/10.1016/0009-2614(85)85026-0
 

Current number: