Funct. Mater. 2022; 29 (4): 494-501.

doi:https://doi.org/10.15407/fm29.04.494

Optical spectroscopy of cyanine dyes J-aggregates in porous TiO2 matrices

I.Yu.Ropakova1, P.V.Pisklova1, I.I.Bespalova1, I.A.Borovoy1, O.G.Viagin1, P.V.Mateychenko2, S.L.Yefimova1, A.V.Sorokin1

1Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

The features of the formation of three cyanine dyes J-aggregates in a porous TiO2 matrix formed by positively charged microparticles were studied using optical spectroscopy. The formation of the J-aggregates was found to be better for cationic PIC and L-21 dyes compared to anionic BIC dye despite the charge of TiO2 particles. This manifests itself both in the color of the matrices and in the spectral properties of J-aggregates. For all the dyes, the degree of aggregation was much lower than in solutions, and the monomers made a significant contribution to the absorption spectra. For J-aggregates in TiO2 matrices, a weaker dipole-dipole interaction and a greater static disorder were found. Considering the spectral properties and stability, the PIC dye can be attributed to the best dye for the formation of J-aggregates in a porous TiO2 matrix formed by microparticles.

Keywords: 
cyanine dye, J-aggregate, TiO<sub>2</sub> particle, porous matrix, luminescence, absorption.
References: 
1. A.Mishra, R.K.Behera, P.K.Behera et al., Chem. Rev., 100, 1973 (2000).
https://doi.org/10.1021/cr990402t
 
2. F.Wurthner, T.E.Kaiser, C.R.Saha-Moller, Angew. Chemie Int. Ed., 50, 3376 (2011).
https://doi.org/10.1002/anie.201002307
 
3. D.Mobius, Adv. Mater., 7, 437 (1995).
https://doi.org/10.1002/adma.19950070503
 
4. J-aggregates, ed. by T.Kobayashi, World Scientific, Singapore (1996).
 
5. J-aggregates, ed. by T.Kobayashi, vol. 2, World Scientific, Singapore (2012).
 
6. J.L.Bricks, Y.L.Slominskii, I.D.Panas et al., Methods Appl. Fluoresc., 6, 012001 (2017).
https://doi.org/10.1088/2050-6120/aa8d0d
 
7. A.V.Sorokin, S.L.Yefimova, Y.V.Malyukin, in: Encycl. Polym. Sci. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA (2018), p.1.
 
8. H.von Berlepsch, C.Bottcher, A.Ouart et al., J. Phys. Chem. B, 104, 5255 (2000).
https://doi.org/10.1021/jp000220z
 
9. D.H.Auston, A.A.Ballman, P.Bhattacharya et al., Appl. Opt., 26, 211 (1987).
https://doi.org/10.1364/AO.26.000211
 
10. X.Ma, J.Hua, W.Wu et al., Tetrahedron, 64, 345 (2008).
https://doi.org/10.1016/j.tet.2007.10.094
 
11. R.Hany, B.Fan, F.A.de Castro et al., Prog. Photovoltaics Res. Appl., 19, 851 (2011).
https://doi.org/10.1002/pip.1049
 
12. D.Saccone, S.Galliano, N.Barbero et al., European J. Org. Chem., 2016, 2244 (2016).
https://doi.org/10.1002/ejoc.201501598
 
13. S.Jenatsch, L.Wang, N.Leclaire et al., Org. Electron. Physics. Mater. Appl., 48, 77 (2017).
https://doi.org/10.1016/j.orgel.2017.05.038
 
14. D.Gesevicius, A.Neels, S.Jenatsch et al., Adv. Sci., 5, 1700496 (2018).
https://doi.org/10.1002/advs.201700496
 
15. A.V.Sorokin, I.Ropakova, I.A.Borovoy et al., Funct. Mater., 24, (2017).
 
16. A.V.Sorokin, I.Y.Ropakova, S.Wolter et al., J. Phys. Chem. C, 123, 9428 (2019).
https://doi.org/10.1021/acs.jpcc.8b09338
 
17. A.V.Sorokin, A.V.Voloshko, I.I.Fylymonova et al., Funct. Mater., 21, 42 (2014).
https://doi.org/10.15407/fm21.01.042
 
18. A.V.Sorokin, N.V.Pereverzev, I.I.Grankina et al., J. Phys. Chem. C, 119, 27865 (2015).
https://doi.org/10.1021/acs.jpcc.5b09940
 
19. B.O"Regan, M.Gratzel, Nature, 353, 737 (1991).
https://doi.org/10.1038/353737a0
 
20. A.Tricoli, A.S.Wallerand, M.Righettoni, J. Mater. Chem., 22, 14254 (2012).
https://doi.org/10.1039/c2jm15953h
 
21. B.O.Aduda, P.Ravirajan, K.L.Choy et al., Int. J. Photoenergy, 6, 141 (2004).
https://doi.org/10.1155/S1110662X04000170
 
22. M.S.A.Abdel-Mottaleb, M.M.S.Abdel-Mottaleb, H.S.Hafez et al., Int. J. Photoenergy, 2014, 1 (2014).
https://doi.org/10.1155/2014/579476
 
23. K.Sayama, S.Tsukagoshi, K.Hara et al., J. Phys. Chem. B, 106, 1363 (2002).
https://doi.org/10.1021/jp0129380
 
24. J.Xiang, C.Chen, Z.Chen et al., J Colloid Interface Sci, 254, 195 (2002).
https://doi.org/10.1006/jcis.2002.8566
 
25. A.Liess, A.Arjona-Esteban, A.Kudzus et al., Adv. Funct. Mater., 29, 1805058 (2019).
https://doi.org/10.1002/adfm.201805058
 
26. S.B.Anantharaman, K.Strassel, M.Diethelm et al., J. Mater. Chem. C, 7, 14639 (2019).
https://doi.org/10.1039/C9TC04773E
 
27. I.Renge, U.P.Wild, J. Phys. Chem. A, 101, 7977 (1997).
https://doi.org/10.1021/jp971371d
 
28. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, Boston, MA (2006).
https://doi.org/10.1007/978-0-387-46312-4
 
29. J.Knoester, V.M.Agranovich, in: Thin Film. Nanostructures Electron. Excit. Org. Based Nanostructures, vol. 31, ed. by V.M.Agranovich and G.F.Bassani (2003), p.1.
https://doi.org/10.1016/S1079-4050(03)31001-4
 
30. A.V.Sorokin, A.A.Zabolotskii, N.V.Pereverzev et al., J. Phys. Chem. C, 119, 2743 (2015).
https://doi.org/10.1021/jp5102626
 
31. D.Noukakis, M.Van der Auweraer, F.C.De Schryver, J. Phys. Chem., 98, 11745 (1994).
https://doi.org/10.1021/j100096a019
 
32. G.Y.Guralchuk, A.V.Sorokin, I.K.Katrunov et al., J. Fluoresc., 17, 370 (2007).
https://doi.org/10.1007/s10895-007-0201-5
 
33. G.Y.Guralchuk, I.K.Katrunov, R.S.Grynyov et al., J. Phys. Chem. C, 112, 14762 (2008).
https://doi.org/10.1021/jp802933n
 
34. S.L.Yefimova, G.V.Grygorova, V.K.Klochkov et al., J. Phys. Chem. C, 122, 20996 (2018).
https://doi.org/10.1021/acs.jpcc.8b06590
 
35. A.V.Sorokin, I.Y.Ropakova, R.S.Grynyov et al., Dye. Pigment., 152, 49 (2018).
https://doi.org/10.1016/j.dyepig.2018.01.032
 

Current number: