Funct. Mater. 2022; 29 (4): 506-513.

doi:https://doi.org/10.15407/fm29.04.506

Biogenic hydroxyapatite-based composites modified by magnetite and chitosan: bioresorption in physiological solution and cytotoxicity

A.Synytsia1, P.Zaremba2, S.Zahorodnia2, O.Sych1,3, T.Babutina1, I.Kondratenko1

1Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv 03142, Ukraine
2D.Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Akademika Zabolotny Str., 03143 Kyiv, Ukraine
3Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland

Abstract: 

This work is devoted to the investigation of interaction of BHA/magnetite/chitosan composites with a magnetite content of 1, 5, 25, and 50 wt.% with physiological solution and their cytotoxicity. It was established that increasing of magnetite content leads to increasing of composites resorption. Moreover, the use of magnetite obtained by chemical precipitation in amount of 5-50 % allows to achieve resorption rate equal to 2.5-5.3 wt.%/day,which in 3.5-7.5 times higher in comparison with "pure" biogenic hydroxyapatite and 1.2-2 times higher in comparison with composites with magnetite obtained by decomposition in nitrogen media. The process of resorption is also confirmed by change in pH,presence of Ca, P and Fe in physiological solution after experiments in vitro, decreasing of particles size and increasing of specific surface area of the composites powders. The results of cytotoxicity study confirmed that BHA/magnetite/chitosan composites have no cytotoxic effect. That is why prepared composites could be promising for use in medicine.

Keywords: 
hydroxyapatite, magnetite, chitosan, composites, resorption, physiological solution, cytotoxicity
References: 
1. C.M.Muller-Mai, S.I.Stupp, C.Voigt, U.Gross, J. Biomed. Mater. Res., 29, 9 (1995).
https://doi.org/10.1002/jbm.820290103
 
2. Patent Ukraine No. 61938.
 
3. C.Du, F.Z.Cui, Q.L.Feng et al., J. Biomed. Mater. Res., 42, 540 (1998).
https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<540::AID-JBM9>3.0.CO;2-2
 
4. C.Du, F.Z.Cui, X.D.Zhu, K.de Groot, J. Biomed. Mater. Res., 44, 407 (1991).
https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<407::AID-JBM6>3.0.CO;2-T
 

5. A.Synytsia, O.Sych, T.Babutina et al., Func. Mater., 29, 299 (2022).

https://doi.org/10.15407/fm29.02.299

 
6. L.He, H.Li, X.Chen et al., Ceram. Int., 45, 13787 (2019).
https://doi.org/10.1016/j.ceramint.2019.04.075
 
7. H.Maleki-Ghaleh, M.HosseinSiadati, A.Fallah et al., Chem. Eng. J., 426, 131321 (2021).
https://doi.org/10.1016/j.cej.2021.131321
 
8. U.Anjaneyulua, V.K.Swaroopb, U.Vijayalakshmia, RSC Advances., 13, 1458 (2016).
 
9. A.Pistone, D.Iannazzo, C.Celesti et al., Materials, 12, 2321 (2019).
https://doi.org/10.3390/ma12142321
 
10. A.V.Chaves, R.M.Freire, V.P.Feitosa et al., J. Compos. Sci., 5, 37 (2021).
https://doi.org/10.3390/jcs5020037
 
11. F.Heidari, M.Razavi, M.E.Bahrololoom et al., Mater. Scien. Engin. C., 65, 338 (2016). 1
https://doi.org/10.1016/j.msec.2016.04.039
 
12. E.Duguet, S.Mornet, S.Vasseur, J.Devoisselle, Nanomedicine, 1, 157 (2006).
https://doi.org/10.2217/17435889.1.2.157
 
13. T.K.Jain, J.Richey, M.Strand et al., Biomaterials, 29, 4012 (2008).
https://doi.org/10.1016/j.biomaterials.2008.07.004
 
14. A.Synytsia, O.Sych, A.Iatsenko et al., Appl Nanosci., 12, 929 (2021).
https://doi.org/10.1007/s13204-021-01797-5
 
15. R.Morrissey, L.M.Rodriguez Lorenzo, K.A.Gross, J. Materials Science: Materials in Medicine, 16, 387 (2005).
https://doi.org/10.1007/s10856-005-6976-5
 
16. E.Kramer, M.Zilm, M.Wei, Bioceramics Development and Applications, 3, ??? (2013).
https://doi.org/10.4172/2090-5025.1000067
 
17. A.K.Gupta, M.Gupta, Biomaterials, 26, 3995 (2005).
https://doi.org/10.1016/j.biomaterials.2004.10.012
 
18. Q.A.Pankhurst, N.T.K.Thanh, S.K.Jones, J.Dobson, J. Physics D: Applied Physics, 42, 224001 (2009).
https://doi.org/10.1088/0022-3727/42/22/224001
 
19. A.H.Lu, E.L.Salabas, F.Schuth, Chemie International Edition., 46, 1222 (2007).
https://doi.org/10.1002/anie.200602866
 
20. H.B.Na, I.C.Song, T.Hyeon, Adv. Mater., 21, 2133 (2009).
https://doi.org/10.1002/adma.200802366
 
21. N.Singh, G.J.S.Jenkins, R.Asadi, S.H.Doak, Nano Rev., 1, 5358 (2010).
https://doi.org/10.3402/nano.v1i0.5358
 
22. W.Zheng, F.Gao, H.Gu, J. Magn. Magn. Mater., 288, 403 (2005).
https://doi.org/10.1016/j.jmmm.2004.09.125
 
23. I.S.Chekman, A.M.Doroshenko, Ukrainian Medical Journal, 1, 31 (2012).
 
24. T.M.Stamford-Arnaud, T.C.M.Stamford, Biotecnologiaaplicada a Agricultura: Textos de Apoio e Protocolosexperimentais, 6, 733 (2010).
 
25. J.Synowiecki, N.A.A.Al-Khatteb, Crit. Rev. Food Sci. Nut., 43, 144 (2003).
https://doi.org/10.1080/10408690390826473
 
26. S.Kusnieruk,J.Wojnarowicz, A.Chodara et al.,Beilstein J. Nanotechnol., 7, 1586 (2016).
https://doi.org/10.3762/bjnano.7.153
 
27. O.Sych, N.Pinchuk, T.Tomila et al., Advanced Nano-Bio-Materials and Devices, 4, 617 (2020).
 
28. O.Sych, O.Otychenko, N.Ulianchych et al., Advanced Nano-Bio-Materials and Devices, 2, 287 (2018).
 
 
 

Current number: