Funct. Mater. 2022; 29 (4): 521-529.

doi:https://doi.org/10.15407/fm29.04.521

Effect of tension on the formation of local voids and integral damages in DC04 steel sheets

A.Briukhanov1, G.Gerstein2, N.Volchok1, F.Nurnberger2, V.Lukashin1, D.Dyachok1

1South Ukrainian National Pedagogical University, Odessa, Ukrain
2Institut fur Werkstoffkunde (Materials Science), Leibniz Universitat Hannover, An der Universitat 2, Garbsen, Germany

Abstract: 

The effect of tensile strains (ε) on changes of the damage level (D) for steel DC04 (0.06 % C, up to 0.35 % Mn, up to 0.40 % Si, ~ 0.025 % S and P) sheets was studied. D was evaluated by electron microscopy and the change in Youngs modulus (E) of a conditionally intact sample (standard). Pre-recrystallization annealing results in the formation of a structure with a minimum D and increased E in the rolling direction (RD) and transverse direction (TD) with unchanged texture and anisotropy E (ETD > ERD). Tensile strain (TS) at the first stage (~ 5 %) leads to the formation of nucleation damage in the form of spherical pores up to 100 nm in size in the near-surface layer of steel, distributed over the volume and grain boundaries. ETD and ERD decrease to pre-annealing values. At a deformation of 10-20 %, new pores and chains of them are formed. E decreases and D increases uniformly. At deformations of more than 20 %, the pores in the chains show a tendency to merge (coagulate) with the formation of cracks in the form of plates, which are perpendicular to the direction of (TD). The decrease in the Youngs modulus in RD and TD and the increase in D are sharper. An analysis of texture changes confirms the predominant contribution of damage to the effect of a decrease in Youngs modulus under tensile deformation.

Keywords: 
deformation, tension, damage, Youngs modulus, texture, pore, microcrack.
References: 
1. S.I.Alekseeva, I.V.Viktorova, M.A.Fronya, Proc. of the Conference "Hereditary Mechanics of Deformation and Fracture of Solids - the Scientific Heritage of Yu.N.Rabotnova, February 24-26 2014, I of ME RAS, Moscow (2014), p.11.
 
2. L.Sosnovskiy, S.Sherbakov, Bulletin of TNTU, Part 1, 14 (2011).
 
3. Fracture. An Advanced Treatise, vol.II, Mathematical Fundamentals, ed. by H.Liebowitz, School of Engineering and Applied Science, The George Washington University, Academic Press, New York and London (1968).
 
4. L.M.Kachanov, Introduction to Continuum Damage Mechanics, Dordrecht; Boston: Martinus Nijhoff (1986).
https://doi.org/10.1007/978-94-017-1957-5
 
5. S.Murakami, Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, Heidelberg, London, New York (2012).
https://doi.org/10.1007/978-94-007-2666-6_10
 
6. J.A.Lemaitre, A Course on Damage Mechanics, Berlin, Springer-Verlag (1992).
https://doi.org/10.1007/978-3-662-02761-5
 
7. P.S.Valegov, D.S.Gribov, P.V.Trusov, Physical Mesomechanics, 18, 11 (2015).
 
8. Standart Test Method for Dynamic Modulus, Shear Modulus, Poisson's Ratio by Impulse Excitation of Vibration/ ASTM International. -E1876-09, p.1181-1196
 
9. G.Gerstein, A.A.Bruchanov, D.V.Dyachok, F.Nurnberger, Materials Letters, 164, 356 (2016).
https://doi.org/10.1016/j.matlet.2015.11.007
 
10. Salzgitter Flachstahl DC04 Seite von Stand: 06/06
 
11. A.A.Bryukhanov, G.Gerstein, N.A.Volchok et al., Physics of Metals and Metallography, 120, 506 (2019).
https://doi.org/10.1134/S0031918X19020029
 
12. G.Gerstein1, T.Clausmeyer, K.Isik et al,, Intern. Journal of Damage Mechanics, ????? (2016).
 
13. Spectra PLUS 5.0.23 (FFT Spectral Analysis System), www.spectraplus.com, Pioneer Hill Software LLC, 24460 Mason Road NW,Poulsbo, WA 98370 USA.
 
14. N.A.Volchok, D.A,Dyachok, Z.A.Briukhanova, E.Dyshlov, Functional Materials, 27, 170 (2020).
 
15. P.G.Cheremskoy, V.V.Slezov, V.I.Betekhtin, Pores in a Solid Body, Energoatomizdat, Moscow (1990).
 
16. A.I.Yurkova, Yu.V.Milman, A.V.Byakovaa, Structure and Mechanical Properties of Iron Subjected to Surface Severe Plastic Deformation by Friction: I. Structure Formation, Russian Metallurgy (Metally), Vol. 2010, No. 4, p. 249-257.
https://doi.org/10.1134/S0036029510040014
 
17. V.I.Betekhtin, V.I.Vladimirov, A.I.Petrov et al., Physical Mesomechanics, 18, 52 (2015).
 
18. I.M.Zhukovsky, A.A.Zisman, V.V.Rybin, Solid State Physics, 27, 2885 (1985),
 
19. M.Gologanu, J.B.Leblond, G.Perrin, J.Devaus, Continium Micromichanics: CISM Courses and Lecturs, ed. by P.Suquet, vol.377, 61 (1977).
 
20. J.Besson, Inst. J. Damage Mech., 19, 3 (2010).
https://doi.org/10.1177/1056789509103482
 
21. A.A.Bryukhanov, D.Fassmann, Z.A.Bryukhanova. The Physics of Metals and Metallography, 113, 721 (2012).
https://doi.org/10.1134/S0031918X12070034
 

Current number: