Funct. Mater. 2022; 29 (4): 530-536.

doi:https://doi.org/10.15407/fm29.04.530

Structure formation and peculiarities of polymer composites based on the mixture of epoxy and polyethylene oxide oligomers

L.Matkovska1, I.Tkachenko2, V.Demchenko2, O.Matkovska3

1PJSC SIC "Borshchahivskiy CPP", 17 Myru Str., 03134 Kyiv, Ukraine
2Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske shaussee, 02160 Kyiv, Ukraine
3PHEE "Kyiv Medical University", 2 Boryspilska Str., 02099 Kyiv, Ukraine

Abstract: 

The article is devoted to the study of the curing kinetics and structural organization of the polymer composites based on the mixture of low molecular (diglycidyl ether of polyethylene glycol) and high molecular (polyethylene oxide) weight oligomers. The features of organic composites were studied by Fourier transform infrared spectroscopy (FT-IR), rheological analysis (RA), wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS) methods, and scanning electron microscopy (SEM). The optimal curing conditions of an epoxy matrix were investigated. The semi-crystalline structure of the composite with the addition of PEO to the epoxy systems and a decrease in the crystallinity of polyethylene oxide were found. An increase in the content of PEO in the composites leads to a decrease in the size of the regions of inhomogeneity and an increase in the value of contrast electron densities. The stochastic nature of the location of different types of inhomogeneity regions in the volume is revealed.

Keywords: 
Epoxy resin, polyethylene oxide, semi-crystalline composite, structure.
References: 
1. W.-C.Chu, W.-S.Lin, S.-W.Kuo, Mat., 9, 449 (2016).
https://doi.org/10.3390/ma9060449
 
2. K.Yamada, H.Kishi, Pol. J., 49, 617 (2017).
https://doi.org/10.1038/pj.2017.26
 
3. S.Horold, Pol. Degr. Stab., 64, 427 (1999).
https://doi.org/10.1016/S0141-3910(98)00163-3
 
4. S.Ananda Kumar, T.Balakrishnan, M.Alagar, Z.Denchev, Progress in Org Coat., 55, 207 (2006).
https://doi.org/10.1016/j.porgcoat.2005.10.001
 
5. S.K.Fullerton-Shirey, J.K.Maranas, Macromol., 42, 2142 (2009).
https://doi.org/10.1021/ma802502u
 
6. A.Karmakar, A.Ghosh, Curr. Appl. Phys., 12, 539 (2012).
https://doi.org/10.1016/j.cap.2011.08.017
 
7. D.E.Fenton, J.M.Parker, P.V.Wright, Pol., 14, 589 (1973).
https://doi.org/10.1016/0032-3861(73)90146-8
 
8. J.F.Moulin, P.Damman, M.Dosiere, Pol., 40, 171 (1999).
https://doi.org/10.1016/S0032-3861(98)00214-6
 
9. V.D.Noto, S.Lavina, G.A.Giffin, E.Negro, Br. Scrosati, Electr. A, 57, 4 (2011).
https://doi.org/10.1016/j.electacta.2011.08.048
 
10. L.Porcarelli, C.Gerbaldi, F.Bella, J.R.Nair, Sci. Rep., 6, 19892 (2016).
https://doi.org/10.1038/srep19892
 
11. Y.Kim, E.S.Smotkin, Sol. St. Ion., 149, 29 (2002).
https://doi.org/10.1016/S0167-2738(02)00130-3
 
12. S.Zheng, H.Lu, C.Chen, K.Nie, Q.Guo, Colloid Polym Sci., 281, 1015 (2003).
https://doi.org/10.1007/s00396-003-0870-9
 
13. M.Larranaga, I.Mondragon, C.Cr.Riccardi, P.Intern., 56, 426 (2007).
https://doi.org/10.1002/pi.2184
 
14. S.Lu, R.Zhang, X.Wang et al., Eur. Phys. J. E. Soft. Matter., 38, 118 (2015).
https://doi.org/10.1140/epje/i2015-15118-0
 
15. O.Kratky, I.Pilz, P.J.Schmitz, J. Coll. Interface Sci., 21, 24 (1966).
https://doi.org/10.1016/0095-8522(66)90078-X
 
16. L.Bellamy, Infrared Spectra of Complex Molecules, Foreign Lit. Pub. House, Moscow (1963) [in Russian].
 
17. V.I.Kodolov, G.E.Zaikov, A.K.Haghi, Nanostructures, Nanomaterials, and Nanotechnologies to Nanoindustry, Apple Academic Press (2014).
 
18. M.G.Gonzalez, J.C.Cabanelas, J.Baselga, Infr. Spectr-Mat. Sc., Eng. Techn. ed. by Th.Theophile, InTech, Chapter (2012), p.13.
 
19. S.Vyazovkin, N.Sbirrazzuoli, Macrom., 29, 1867 (1996).
https://doi.org/10.1021/ma951162w
 
20. J.Wan, B.Gan, C.Li et al., J. Mat. Ch., 3, 21907 (2015).
https://doi.org/10.1039/C5TA02939B
 
21. F.Lionetto, A.Moscatello, A.Maffezzoli, Comp., 112, 243 (2017).
https://doi.org/10.1016/j.compositesb.2016.12.031
 
22. Z.Ahmad, M.P.Ansell, D.Smedley, P.Md.Tahir, Ind.}J. Eng. & Mat. S., 19, 343 (2012).
 
23. C.E.Corcione, F.Freuli, M.Frigione, Mat., 7, 6832 (2014).
https://doi.org/10.3390/ma7096832
 
24. G.Bogoeva-Gaceva, A.Buzarovska, Mac. J. Ch. & Ch. Eng., 32, 337 (2013).
https://doi.org/10.20450/mjcce.2013.303
 
25. L.Matkovska, M.Iurzhenko, Y.Mamunya et al., Nanoscale Res. Lett., 9, 674 (2014).
https://doi.org/10.1186/1556-276X-9-674
 
26. V.Demchenko, S.Riabov, N.Rybalchenko et al., Eur. Polym. J., 96, 326 (2017).
https://doi.org/10.1016/j.eurpolymj.2017.08.057
 
27. L.Matkovska, M.Iurzhenko, Ye.Mamunya et al., Nanoscale Res. Lett., 12, 423 (2017).
https://doi.org/10.1186/s11671-017-2195-5
 
28. W.Ruland, J. Appl. Cryst., 4, 70 (1971).
https://doi.org/10.1107/S0021889871006265
 
29. R.Perret, W.Ruland, Eine verbesserte Auswertungsmethode fur die Rontgenkleinewin-kelstreuung von Hochpolymeren, Kolloid-Zeitschrift & Zeitschrift fur Polymere, 247, 835 (1971).
https://doi.org/10.1007/BF01500257
 
30. G.Porod, Small-angle X-ray Scattering, ed. by O.Glatter, O.Kratky, Acad. Press, London (1982).
 
 
 

Current number: