Funct. Mater. 2022; 29 (4): 628-636.

doi:https://doi.org/10.15407/fm29.04.628

State-of-the-art report soil improvement with bio-grouting materials

Xiaolin Gu1, Zixuan An1, Hongbo Ji2

1Yuanpei College, Shaoxing University, 312000 Shaoxing, China
2Zhejiang Zhongcheng Construction Engineering Group Co., Ltd, 312000 Shaoxing, China

Abstract: 

In recent years, the cross-discipline of geotechnical engineering, microbiology and chemistry has shown good competitiveness in issues of modified soil. Microbial grouting material is a new type of modified soil material developed recently. By pouring bacterial liquid and nutrition into loose sand and using microbial mineralization to rapidly precipitate carbonate between sand particles, the physical and mechanical properties of soil are improved. This paper mainly summarizes the research of many scholars on the modified soil of biological grouting materials in recent years, and expounds the microbial-induced carbonate precipitation in biological grouting. The application and soil modification mechanism of three kinds of biological grouting materials: enzyme-induced carbonate precipitation and bio-induced carbonate dehydration and precipitation, and points out the great application prospect of biological grouting materials in geotechnical engineering and the problems to be solved in the future.

Keywords: 
biological grouting material, microbially induced CaCO<sub>3</sub> precipitation, soil improvement, bio cement.
References: 
1. J.T.DeJong, M.B.Fritzges, K.Nusslein., J. Geotech Geoenviron., 132, 1381 (2006).
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
 
2. P.Jie, F.ingpeng, S.Yicheng., Chin. J. Geotech. Eng., 40, 1048 (2018).
 
3. X.Cheng, Q.Ma, Z.Yang et al., Chin. J. Geotech. Eng., 35, 1486 (2013).
 
4. L.Wu, L.Miu, X.Sun et al., Chin. J. Geotech. Eng., 42, 714 (2020).
 
5. W.M.Q, W.L, L.S.H., Concrete., 3, 14 (2019).
 
6. V.S.Whiffin., Murdoch University (2004).
 
7. A.Almajed, H.Abbas, M.Arab et al., J Clean Product., 274, 122627 (2020).
https://doi.org/10.1016/j.jclepro.2020.122627
 
8. R.K.J.G.Rowe, Geotechnique, 55, 631 (2005).
https://doi.org/10.1680/geot.2005.55.9.631
 
9. C.S.Tang, L.Y.Yin, N.J.Jiang et al., Environmental Earth Sciences, 79, 1 (2020).
https://doi.org/10.1007/s12665-019-8746-6
 
10. B.Liu, C.Zhu, C.S.Tang et al., Engineering Geology, 264, 105389 (2020).
https://doi.org/10.1016/j.enggeo.2019.105389
 
11. M.Naveed, J.Duan, S.Uddin et al., Ecological Engineering, 153, 105885 (2020).
https://doi.org/10.1016/j.ecoleng.2020.105885
 
12. Q.Zhao, L.Li, C.Li et al., J. Mater. Civ. Eng., 26, 04014094 (2014).
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
 
13. S.G.Choi, K.Wang, Z.Wen et al., Cement and Concrete Composites, 83, 209 (2017).
https://doi.org/10.1016/j.cemconcomp.2017.07.013
 
14. H.Chung, S.H.Kim, K.J.S.o.T.T.E.Nam, Science of The Total Environment, 740, 140194 (2020).
https://doi.org/10.1016/j.scitotenv.2020.140194
 
15. A.Zamani, B.M.J.S.D.Montoya, Soil Dynamics and Earthquake Engineering, 120, 436 (2019).
https://doi.org/10.1016/j.soildyn.2019.01.010
 
16. Y.Al-Salloum, S.Hadi, H.Abbas et al., Constr Build Mater., 154, 857 (2017).
https://doi.org/10.1016/j.conbuildmat.2017.07.203
 
17. W.De Muynck, N.De Belie, W.J.E.e.Verstraete, Ecological Engineering, 36, 118 (2010).
https://doi.org/10.1016/j.ecoleng.2009.02.006
 
18. X.Chen, V.J.J.o.h.m.Achal, J hazardous Materials, 368, 705 (2019).
https://doi.org/10.1016/j.jhazmat.2019.01.108
 
19. J.Hommel, A.Akyel, Z.Frieling et al., Applied Sciences, 10, 4538 (2020).
https://doi.org/10.3390/app10134538
 
20. M.Y.R, Yangzhou University (2014).
 
21. X.L.Yuan, S.H.J.H. Zhou, Concrete, 3 (2012).
 
22. W.R.X, Southeast University (2005).
 
23. R.Bhaumik, N.K.Mondal, S.Chattoraj et al., American Journal of Analytical Chemistry, 4, 404 (2013).
https://doi.org/10.4236/ajac.2013.48051
 
24. L.A.Van Paassen, Delft University of Technology (2009).
 
25. M.P.Harkes, L.A.Van Paassen, J.L.Booster et al., Ecological Engineering, 36, 112 (2010).
https://doi.org/10.1016/j.ecoleng.2009.01.004
 
26. F.J.R.i.e.s.Hammes, Reviews in Environmental Science and Biotechnology, 1, 3 (2002).
https://doi.org/10.1023/A:1015135629155
 
27. C.Miao, Y.Li, J.Zheng et al., J. Civil Engineering and Management, 29, 25 (2012).
 
28. G.D.Okwadha, J.J.C.Li, Chemosphere, 81, 1143 (2010).
https://doi.org/10.1016/j.chemosphere.2010.09.066
 
29. C.Barabesi, A.Galizzi, G.Mastromei et al., J Bacteriology, 189, 228 (2007).
https://doi.org/10.1128/JB.01450-06
 
30. P.Li, W.J.J.o.t.C.C.S.Qu, J Chinese Ceramic Society, 37, 497 (2009).
 
31. A.J.Phillips, R.Gerlach, E.Lauchnor et al., Biofouling, 29, 715 (2013).
https://doi.org/10.1080/08927014.2013.796550
 
32. J.J.J.o.Z.U.Xu, J ZheJiang University, 46, 2020 (2012).
 
33. J.Wang, K.Van Tittelboom, N.De Belie et al., Constr Build Mater, 26, 532 (2012).
https://doi.org/10.1016/j.conbuildmat.2011.06.054
 
34. Z.Yang, X.Cheng, M.Li, Geo-Frontiers 2011: Advances in Geotechnical Engineering, 4031 (2011).
 
35. C.W.Chou, E.A.Seagren, A.H.Aydilek, M.J.J.o.G. Lai, G. J. Geotechnical and Geoenvironmental Eng., 137, 1179 (2011).
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532
 
36. B.J.S.N.T.U.Li, Singapore: Nanyang Technological University (2014).
 
37. J.T.DeJong, B.M.Mortensen, B.C.Martinez, D.C.Nelson, Ecol. Eng., 36, 197 (2010).
https://doi.org/10.1016/j.ecoleng.2008.12.029
 
38. J.Y.Shen, Tsinghua University (2009).
 
39. V.S.Whiffin, L.A.Van Paassen, M.P.Harkes, J. Geomicrobiol., 24, 417 (2007).
https://doi.org/10.1080/01490450701436505
 
40. H.Lin, M.T.Suleiman, D.G.Brown, Soils Foundations, 60, 944 (2020).
https://doi.org/10.1016/j.sandf.2020.07.003
 
41. B.Martinez, J.DeJong, T.Ginn et al., J. Geotechnical Geoenvironmental Eng., 139, 587 (2013).
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787
 
42. S.Peng, H.Di, L.Fan et al., Frontiers in Earth Science, 8, 217 (2020).
https://doi.org/10.3389/feart.2020.00217
 
43. S.L.G.Ferris F.G., Bacteriogenic Mineral Plugging: U.S (1992-9-1).
https://doi.org/10.2118/SS-92-11
 
44. J.Chu, V.Ivanov, V.Stabnikov et al., ICE Publishing, 215 (2014).
https://doi.org/10.1680/bcmpge.60531.020
 
45. H.Rong, C.Qian, J Wuhan University of Technology-Mater. Sci. Ed., 28, 1134 (2013).
https://doi.org/10.1007/s11595-013-0833-z
 
46. M.Van der Ruyt, W.van der Zon, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162, 81 (2009).
https://doi.org/10.1680/geng.2009.162.1.81
 
47. H.Rong, C.Qian, X.Wang, J. Functional Materials, 45, 11091 (2014).
https://doi.org/10.1002/chin.201447249
 
48. L.Cheng, R.Cord-Ruwisch, M.A.Shahin, CaGeJ, 50, 81 (2013).
https://doi.org/10.1139/cgj-2012-0023
 
49. M.G.Gomez, B.C.Martinez, J.T.DeJong et al., Proceedings of the Institution of Civil Engineers-Ground Improvement, 168, 206 (2015).
https://doi.org/10.1680/grim.13.00052
 
50. N.J.Jiang, K.Soga, O.Dawoud, Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability, 1586 (2014).
 
51. S.C.Bang, S.H.Min, S.S.Bang, International Journal of Geo-Engineering, 3, 27 (2011).
 
52. D.J.Shen, Jiangsu University of Science and Technology (2017).
 
53. C.Qian, X. Wang, X. Yu, J. Materials Engineering, 43, 92 (2015).
 
54. H.Rong, C.Qian, L.Li, J. Functional Materials, 44, 3408 (2013).
 
55. L.Van Paassen, M.Harkes, G.Van Zwieten et al., Proc. of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, vol.1-4 (2009), p.2328.
 
56. B.Li, Singapore: Nanyang Technological University (2014).
 
57. J.T.DeJong, K.Soga, S.A.Banwart et al., J. R. Soc. Interface, 8, 1 (2011).
https://doi.org/10.1098/rsif.2010.0270
 
58. L.Van Paassen, Proc. of Geo-Frontiers Advances in Geotechnical Engineering (2011), p.4099-108.
 
59. W.Van der Star, W.van Wijngaarden-van Rossum, L.Van Paassen et al., Proc. of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, IOS Press (2011), p.85.
 
60. Y.Zhang, H.Guo, X.Cheng et al., Industrial Construction, 43, 138 (2013).
 
61. A.B.Cunningham, A.J.Phillips, E.Troyer et al., Energy Procedia., 63, 4612 (2014).
https://doi.org/10.1016/j.egypro.2014.11.494
 
62. N.Javadi, H.Khodadadi, N.Hamdan et al., IFCEE 2018, 115 (2018).
 
63. A.Chandra, K.Ravi, Problematic Soils and Goenvironmental Concerns. Springer, 617 (2021).
https://doi.org/10.1007/978-981-15-6237-2_52
 
64. L.Miao, L.Wu, X.Sun et al., Land Degradation Development, 31, 1317 (2020).
https://doi.org/10.1002/ldr.3499
 
65. K.Liu, N.Jiang, J.Qin et al., Acta Geotechnica, 16, 467 (2021).
https://doi.org/10.1007/s11440-020-01046-z
 
66. A.Dakhane, S.Das, H.Hansen et al., J. Mater. Civ. Eng., 30, 04018035 (2018).
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002218
 
67. V.Rebata-Landa, J.C.Santamarina, J. Geotechnical Geoenvironmental Engineering, 138, 128 (2012).
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000571
 
68. J.He, J.Chu, V.Ivanov, ICE Publishing, 116 (2014).
https://doi.org/10.1017/CBO9781139923552.019
 
 
 

Current number: