Funct. Mater. 2023; 30 (1): 12-17.

doi:https://doi.org/10.15407/fm30.01.12

1. Physical parameters of the energy barrier of graphene/p-CdTe Schottky diodes

I.P.Koziarskyi1, M.I.Ilashchuk1, I.G.Orletskyi1, L.A.Myroniuk1,2, D.V.Myroniuk1,2, E.V.Maistruk1, D.P.Koziarskyi1, I.M.Danylenko3

1Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubynskyi Str., 58002 Chernivtsi, Ukraine
2I.M.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 60 Nauky Ave., 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine
3V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

Graphene/p-CdTe Schottky diodes were obtained by spaying polyvinylpyrrolidone solutions of particles of multilayer graphene. It was established that the spray process does not affect the electrical parameters of the substrates when they are heated to a temperature of TS = 523 K. The formation of graphene layers was confirmed by the study of Raman scattering spectra in the frequency range of 1000-3250 cm-1, which correspond to the vibrations of carbon sp2 bonds. The intense peak of the 2D band and its asymmetry indicate the presence of graphene on p-CdTe substrates and its multilayer nature. Based on the study of the temperature dependence of the I-V-characteristics, the diode properties of the investigated graphene/p-CdTe structures were established, the energy barrier height qφk = 0.75 eV and the temperature coefficient of its change d(qφk)/dT = -2.6·10-3 eV/K were estimated. The temperature dependence of the series resistance of the structure was analyzed and the ionization energy of the energy level responsible for the equilibrium conductivity in the base material was determined. The analysis of the C-V-characteristics measured in a wide frequency range from 10 kHz to 1000 kHz made it possible to determine the main physical parameters of the energy barrier, as well as the impurity concentration and its distribution in the p-CdTe region. It was confirmed that the concentration of the electrically active acceptor impurity in the near-contact region of the p-CdTe substrate coincides with the concentration of holes in the base material.

Keywords: 
graphene, Schottky diodes, CdTe, energy barrier.
References: 
1. S.V.Morozov, K.S.Novoselov, M.I.Katsnelson et al., Phys. Rev. Lett., 100, 016602 (2008). 
https://doi.org/10.1103/PhysRevLett.100.016602
 
2. K.S.Novoselov, A.K.Geim, S.V.Morozov et al., Nature, 438, 197 (2005). 
https://doi.org/10.1038/nature04233
 
3. K.S.Novoselov, A.K.Geim, S.V.Morozov et al., Science, 306, 666 (2004). 
https://doi.org/10.1126/science.1102896
 
4. M.I.Katsnelson, Materials Today, 10, 20 (2007). 
https://doi.org/10.1016/S1369-7021(06)71788-6
 
5. A.K.Geim, K.S.Novoselov, Nature Materials, 6, 183 (2007). 
https://doi.org/10.1038/nmat1849
 
6. C.Soldano, A.Mahmood, E.Dujardin, Carbon, 48, 2127 (2010). 
https://doi.org/10.1016/j.carbon.2010.01.058
 
7. F.Bonaccorso, Z.Sun, T.Hasan, A.C.Ferrari, Nature Photonics, 4, 611 (2010). 
https://doi.org/10.1038/nphoton.2010.186
 
8. A.D.Bartolomeo, Physics Reports, 606, 1 (2016). 
https://doi.org/10.1016/j.physrep.2015.10.003
 
9. X.Wang, L.Zhi, K.Mullen, Nano Lett., 8, 323 (2008). 
https://doi.org/10.1021/nl072838r
 
10. H.Bi, F.Huang, J.Liang et al., Adv. Mater., 23, 3202 (2011).
https://doi.org/10.1002/adma.201100645
 
11. H.Bi, F.Huang, J.Liang et al., J. Mater. Chem., 21, 17366 (2011). 
https://doi.org/10.1039/c1jm13418c
 
12. Z.Shi, A.H.Jayatissa, Materials, 11, 36 (2018). 
https://doi.org/10.3390/ma11010036
 
13. S.Lin, X.Li, S.Zhang et al., Appl. Phys. Lett., 107, 191106 (2015). 
https://doi.org/10.1063/1.4935426
 
14. J.Liang, H.Bi, D.Wan et al., Adv. Funct. Mater., 22, 1267 (2012). 
https://doi.org/10.1002/adfm.201102809
 
15. M.Aldosari, H.Sohrabpoor, N.E.Gorji, Superlattices Microstruct., 92, 242 (2016). 
https://doi.org/10.1016/j.spmi.2016.02.023
 
16. V.V.Brus, O.L.Maslyanchuk, M.M.Solovan et al., Sci. Rep., 9, 1065 (2019). 
https://doi.org/10.1038/s41598-018-37637-w
 
17. E.Y.Polyakova(Stolyarova), K.T.Rim, D.Eom et al., ACS Nano, 5, 6102 (2011). 
https://doi.org/10.1021/nn1009352
 
18. M.Yi, Z.Shen, Carbon, 78, 622 (2014). 
https://doi.org/10.1016/j.carbon.2014.07.035
 
19. C.Du, S.Wang, X.Miao et al., Beilstein J. Nanotech., 10, 2374 (2019). 
https://doi.org/10.3762/bjnano.10.228
 
20. M.Mohamed, M.Tripathy, A.A.Majeed, Arab. J. Chem., 10, S1726 (2013). 
https://doi.org/10.1016/j.arabjc.2013.06.022
 
21. K.R.Zanio, Semiconductors and Semimetals. Volume 13: Cadmium Telluride. NY:SanFrancisko, Acad. Press (1978).
https://doi.org/10.1016/S0080-8784(08)60064-2
 
22. A.Niemegeers, M.Burgelman, J. Appl. Phys., 81, 2881 (1997). 
https://doi.org/10.1063/1.363946
 
23. E.V.Maistruk, I.G.Orletsky, M.I.Ilashchuk et al., Semicond. Sci. Tech., 34, 045016 (2019). 
https://doi.org/10.1088/1361-6641/ab0a1c
 
24. I.P.Koziarskyi, E.V.Maistruk, I.G.Orletskyi et al., Semicond. Sci. Tech., 35, 025018 (2020). 
https://doi.org/10.1088/1361-6641/ab6107

Current number: