Funct. Mater. 2023; 30 (1): 120-127.

doi:https://doi.org/10.15407/fm30.01.120

Guanidinium-containing oligoether as a complexing agent of transition metal ions

M.Ya.Vortman1, O.S.Berezhnytska3, O.A.Aksenovska2, S.M.Kobylinskyi1, L.V.Kobrina1, V.N.Lemeshko1, V.V.Shevchenko1

1Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkiv Highway, 02160 Kyiv, Ukraine
2V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 50 Kharkiv Highway, 02160 Kyiv, Ukraine
3V.I.Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 32/34 Palladin Ave., Kyiv, Ukraine

Abstract: 

Metal complexes based on guanidinium-containing oligoether and Cu2+, Ni2+, Co2+ or UO22+ ions have been synthesized. The structure of the initial ligand and obtained complexes, as well as the complexing ability of the oligoether towards the transition metal and radionuclide ions was investigated by FTIR, NMR and UV-Vis spectroscopy. It is shown that the synthesized oligomer forms stable complexes with the ions under study. Their coordination number is 6 and the resulting complexes have the form of a distorted octahedron. The chemical composition of the complexes in solution and in the solid state did not change.

Keywords: 
guanidinium-containing oligoether, complexation, FTIR and UV-Vis spectroscopy.
References: 
. N.M.Dyatlova, V.Ya.Temkina, I.D.Kolpakova, Complexes, Khimiia, Moscow (1970) [in Russian].
 
2. M.T.Bryk, E.A.Tsapyuk, Ultrafiltration, Naukova Dumka, Kiev (1989) [in Russian].
 
3. Yu.I.Ditnersky, Baromembrane Processes, Khimiia, Moscow (1986) [in Russian].
 
4. Yu.I.Dytnerskyi, Yu.N.Zhilin, K.F.Volchek, Water Chemistry and Technology, 6, 401 (1984).
 
5. E.I.Solomon, D.E.Heppner, E.M.Johnston et al., Chem. Rev., 114, 3659 (2014).
https://doi.org/10.1021/cr400327t
 
6. P.J.Bailey, S. Pace Coord. Chem. Rev., 214, 91 (2001).
https://doi.org/10.1016/S0010-8545(00)00389-1
 
7. F.T.Edelmann, Advances in Organometallic Chemistry, 57, 183 (2008).
https://doi.org/10.1016/S0065-3055(08)00003-8
 
8. R.Kumar, Polyhedron., 56, 55 (2013). doi.org/10.1016/j.poly.2013.03.043
https://doi.org/10.1016/j.poly.2013.03.043
 
9. H.Pasdar, N.Foroughifar, B.Hedayati, Intern. Journal of Chemistry, 9, 49 (2017).
https://doi.org/10.5539/ijc.v9n3p49
 
10. R.Molinari, S.Gallo, P.Argurio, Water Research., 38, 593 (2004).
https://doi.org/10.1016/j.watres.2003.10.024
 
11. R.Molinari, T.Poerio, P.Argurio, Chemosphere, 70, 341 (2008).
https://doi.org/10.1016/j.chemosphere.2007.07.041
 
12. K.E.Geckeler, K.Volchek, Environmental Science&Technology, 30, 725 (1996).
https://doi.org/10.1021/es950326l
 
13. M.C.Sharma, S.K.Sharma, Advances in Pure and Applied Chemistry, 1, 67 (2012).
 
14. D.M.Saad, E.M.Cukrowska, H.Tutu, Toxicological &Environmental Chemistry, 94, 1916 (2012).
https://doi.org/10.1080/02772248.2012.736997
 
15. N.N.Sauer, D.S.Ehler, B.L.Duran, J. Environm. Engin., 130, 585 (2004).
https://doi.org/10.1061/(ASCE)0733-9372(2004)130:5(585)
 
16. E.A.Osipova, Soros Educational Journal, 8, 40 (1999).
 
17. I.Y.Vointseva, P.A.Gembytskiy, Polyguanidines - Disinfectants and Multifunctional Additives in Composite Materials, Paint industry, Moscow (2009).
 
18. I.I.Vointseva, Part 1 Water: Chemistry and Ecology, 7, 39 (2011).
 
19. P.A.Hembytskyi, I.I.Vointseva. Polymeric Biocidal Preparation Polyhexamethyleneguanidine, Polygraph, Zaporizhzhia (1998) [in Russian].
 
20. M.Ya.Vortman, V.N.Lemeshko, V.V.Shevchenko, Reports of the National Academy of Sciences of Ukraine, 12, 75 (2019).
https://doi.org/10.15407/dopovidi2019.12.075
 
21. M.Ya.Vortman, V.N.Lemeshko, P.V.Vakulyuk et al., Polymer Journal, 42, 199 (2020).
https://doi.org/10.15407/polymerj.42.03.199
 
22. F.T.Edelmann, Advances in Organometallic Chemistry, 61, 55 (2013).
https://doi.org/10.1016/B978-0-12-407692-1.00002-3
 
23. K.Majid, R.Mushtaq, S.Ahmade, Review Journal of Chemistry, 5, 969 (2008).
https://doi.org/10.1155/2008/680324
 

Current number: