Funct. Mater. 2023; 30 (1): 28-34.

doi:https://doi.org/10.15407/fm30.01.28

Influence of topological features and U--centers on electric charge carrying at strong electric fields in GexAsyTe100-x-y amorphous films

A.I.Isayev1, S.I.Mekhtiyeva1, H.I.Mammadova1, R.M.Rzayev2, R.I.Alekberov1,2

1Institute of Physics, Azerbaijan National Academy of Sciences, 13 G.Javid Ave., 1143 Baku, Azerbaijan
2Azerbaijan State University of Economics (UNEC), 6 Istiqlaliyyat Str., 1001 Baku, Azerbaijan

Abstract: 

As a result of studying the current-voltage characteristics of Te-GexAsyTe100-x-y-Al structure at a negative potential of the tellurium electrode, it have been found that at applied electric field voltage exceeding 5·104 V/cm, the current-voltage dependence has the N-shape and exhibits instability in the form of irregular current oscillations. The observed features of electric charge transfer under the influence of strong electric fields are interpreted taking into account the topological features of amorphous chalcogenides and the role of U--centers in the process of generation and recombination of electric charge carriers in the studied structure.

Keywords: 
chalcogenide glass, amorphous, non-crystalline, switching effect.
References: 
1. K.D.Tsendin, Electronic Phenomena in Chalcogenide Glassy Semiconductors, Science, Moscow (1996).
 
2. K.Tanaka, K.Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, Springer (2011).
https://doi.org/10.1007/978-1-4419-9510-0
 
3. A.Zakery, S.Elliott, Journal of Non-Crystalline Solids, 330, 1 (2003).
https://doi.org/10.1016/j.jnoncrysol.2003.08.064
 
4. J.S.Sanghera, I.D.Aggarwal, Journal of Non-Crystalline Solids, 256-257, 6 (1999).
https://doi.org/10.1016/S0022-3093(99)00484-6
 
5. T.Wang, O.Gulbiten, R.P.Wang et al., Journal of Physical Chemistry B, 118, 1436 (2014).
https://doi.org/10.1021/jp412226w
 
6. M.Nardone, M.Simon, I.V.Karpov, V.G.Karpov, Journal of Applied Physics, 112, 071101 (2012).
https://doi.org/10.1063/1.4738746
 
7. N.A.Bogoslovsky, K.D.Tsendin, FTP, 46, 577 (2012).
https://doi.org/10.1134/S1063782612050065
 
8. N.Chandel, N.Mehta, J. of Physics and Chemistry of Solids, 115, 113 (2018).
https://doi.org/10.1016/j.jpcs.2017.12.019
 
9. R.T.A.Kumar, S.T.Mahmouda, D.P.Padiyanb, N.Qamhieha, Optik, 152, 1 (2018).
https://doi.org/10.1016/j.ijleo.2017.09.074
 
10. A.D.Pearson, W.R.Northover, I.F.Dewald, I.W.Peek, Advance in Glass Technology, Plenum Press (1962).
 
11. B.T.Kolomiets, E.A.Lebedev, Radio Engineering and Electronics, 8, 2097 (1963).
 
12. S.R.Ovshinsky, Phys. Rev. Lett., 21, 1450 (1968).
https://doi.org/10.1103/PhysRevLett.21.1450
 
13. N.Yamada, E.Ohno, K.Nishiuchi et al., J. Appl. Phys., 69, 2849 (1991).
https://doi.org/10.1063/1.348620
 
14. S.R.Ovshinsky, J. Non-Cryst. Sol., 2, 99 (1970).
https://doi.org/10.1016/0022-3093(70)90125-0
 
15. H.I.Mammadova, AJP Fizika, 25, 52 (2019).
https://doi.org/10.29228/edu.39
 
16. J.C.Phillips, J.Non-Crystalline Solids, 34, 153 (1979).
https://doi.org/10.1016/0022-3093(79)90033-4
 
17. C.Phillips, M.F.Thorpe, Solid State Commun,, 53, 699 (1985).
https://doi.org/10.1016/0038-1098(85)90381-3
 
18. Thorpe, J. Non-Crystalline Solids, 57, 355 (1983).
https://doi.org/10.1016/0022-3093(83)90424-6
 
19. P.Boolchand, X.Feng, W.J.Bresser, J. Non-Crystalline Solids, 293-295D, 348 (2001).
https://doi.org/10.1016/S0022-3093(01)00867-5
 
20. D.G.Georgiev, P.Boolchand, M.Micoulaut, Physical Review, 62, 9228 (2000).
https://doi.org/10.1103/PhysRevB.62.R9228
 
21. J.C.Phillips, Physical Review B, 88, 216401 (2002).
https://doi.org/10.1103/PhysRevLett.88.216401
 
22. M.Micoulaut, J.C.Phillips, Physical Review, 67, 104204 (2003).
https://doi.org/10.1103/PhysRevB.67.104204
 
23. L.Tichy, H.Ticha, Mater. Lett., 21, 313 (1994).
https://doi.org/10.1016/0167-577X(94)90196-1
 
24. A.I.Isayev, H.I.Mammadova, S.I.Mekhtieva, R.I.Alekberov, FTP, 54, 1052 (2020).
https://doi.org/10.1134/S1063782620100140
 
25. R.A.Street, N.F.Mott, Phys. Rev. Lett., 35, 1293 (1975).
https://doi.org/10.1103/PhysRevLett.35.1293
 
26. P.W.Anderson, Phys. Rev. Lett., 34, 953 (1975).
https://doi.org/10.1103/PhysRevLett.34.953
 
27. M.Kastner, D.Adler, H.Fritzsche, Phys. Rev. Lett., 37, 1504 (1976).
https://doi.org/10.1103/PhysRevLett.37.1504
 
28. A.V.Kolobov, J.Tominaga, Chalcogenides, Springer-Verlag Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28705-3
 
29. N.A.Bogoslovsky, K.D.Tsendin, FTP, 43, 1378 (2009).
https://doi.org/10.1134/S1063782609100145
 
30. V.N.Abakumov, I.A.Merkulov, V.I.Perel, I.N.Yassievich, JETF, 89, 1472 (1985).
 
31. V.Karpus, V.I.Perel, JETF, 42, 403 (1985).
https://doi.org/10.1016/S0092-8674(85)80137-9
 
32. V.Karpus, V.I.Perel, JETF, 91, 2319 (1986).
 
33. V.N.Abakumov, V.Karpus, V.I.Perel, I.N.Yassievich, FTP, 22, 262 (1988).
 
34. L.P.Kazakova, E.A.Lebedev, N.B.Zakharova et al., J. of Non-Crystalline Solids, 167, 65 (1994).
https://doi.org/10.1016/0022-3093(94)90367-0
 
35. R.I.Alekberov, A.I.Isayev, S.I.Mekhtiyeva, M.Fabian, Physica B: Condensed Matter, 550, 367 (2018).
https://doi.org/10.1016/j.physb.2018.09.031
 
35. R.I.Alekberov, S.I.Mekhtiyeva, A.I.Isayev, M.Fabian, J. Non-Crystalline Solids, 470, 152 (2017).
https://doi.org/10.1016/j.jnoncrysol.2017.05.015
 
35. J.Frenkel, Physical Review, 54, 647 (1938).
https://doi.org/10.1103/PhysRev.54.647
 
35. W.R.Harrell, Poole-Frenkel Conduction in Silicon Dioxide Films, and Implications for Hot-Carrier Degradation in n-MOS Devices, Doctoral Dissertation, University of Maryland (1994).

Current number: