Funct. Mater. 2023; 30 (1): 28-34.
Influence of topological features and U--centers on electric charge carrying at strong electric fields in GexAsyTe100-x-y amorphous films
1Institute of Physics, Azerbaijan National Academy of Sciences, 13 G.Javid Ave., 1143 Baku, Azerbaijan
2Azerbaijan State University of Economics (UNEC), 6 Istiqlaliyyat Str., 1001 Baku, Azerbaijan
As a result of studying the current-voltage characteristics of Te-GexAsyTe100-x-y-Al structure at a negative potential of the tellurium electrode, it have been found that at applied electric field voltage exceeding 5·104 V/cm, the current-voltage dependence has the N-shape and exhibits instability in the form of irregular current oscillations. The observed features of electric charge transfer under the influence of strong electric fields are interpreted taking into account the topological features of amorphous chalcogenides and the role of U--centers in the process of generation and recombination of electric charge carriers in the studied structure.
1. K.D.Tsendin, Electronic Phenomena in Chalcogenide Glassy Semiconductors, Science, Moscow (1996). | ||||
2. K.Tanaka, K.Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, Springer (2011). https://doi.org/10.1007/978-1-4419-9510-0 |
||||
3. A.Zakery, S.Elliott, Journal of Non-Crystalline Solids, 330, 1 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.08.064 |
||||
4. J.S.Sanghera, I.D.Aggarwal, Journal of Non-Crystalline Solids, 256-257, 6 (1999). https://doi.org/10.1016/S0022-3093(99)00484-6 |
||||
5. T.Wang, O.Gulbiten, R.P.Wang et al., Journal of Physical Chemistry B, 118, 1436 (2014). https://doi.org/10.1021/jp412226w |
||||
6. M.Nardone, M.Simon, I.V.Karpov, V.G.Karpov, Journal of Applied Physics, 112, 071101 (2012). https://doi.org/10.1063/1.4738746 |
||||
7. N.A.Bogoslovsky, K.D.Tsendin, FTP, 46, 577 (2012). https://doi.org/10.1134/S1063782612050065 |
||||
8. N.Chandel, N.Mehta, J. of Physics and Chemistry of Solids, 115, 113 (2018). https://doi.org/10.1016/j.jpcs.2017.12.019 |
||||
9. R.T.A.Kumar, S.T.Mahmouda, D.P.Padiyanb, N.Qamhieha, Optik, 152, 1 (2018). https://doi.org/10.1016/j.ijleo.2017.09.074 |
||||
10. A.D.Pearson, W.R.Northover, I.F.Dewald, I.W.Peek, Advance in Glass Technology, Plenum Press (1962). | ||||
11. B.T.Kolomiets, E.A.Lebedev, Radio Engineering and Electronics, 8, 2097 (1963). | ||||
12. S.R.Ovshinsky, Phys. Rev. Lett., 21, 1450 (1968). https://doi.org/10.1103/PhysRevLett.21.1450 |
||||
13. N.Yamada, E.Ohno, K.Nishiuchi et al., J. Appl. Phys., 69, 2849 (1991). https://doi.org/10.1063/1.348620 |
||||
14. S.R.Ovshinsky, J. Non-Cryst. Sol., 2, 99 (1970). https://doi.org/10.1016/0022-3093(70)90125-0 |
||||
15. H.I.Mammadova, AJP Fizika, 25, 52 (2019). https://doi.org/10.29228/edu.39 |
||||
16. J.C.Phillips, J.Non-Crystalline Solids, 34, 153 (1979). https://doi.org/10.1016/0022-3093(79)90033-4 |
||||
17. C.Phillips, M.F.Thorpe, Solid State Commun,, 53, 699 (1985). https://doi.org/10.1016/0038-1098(85)90381-3 |
||||
18. Thorpe, J. Non-Crystalline Solids, 57, 355 (1983). https://doi.org/10.1016/0022-3093(83)90424-6 |
||||
19. P.Boolchand, X.Feng, W.J.Bresser, J. Non-Crystalline Solids, 293-295D, 348 (2001). https://doi.org/10.1016/S0022-3093(01)00867-5 |
||||
20. D.G.Georgiev, P.Boolchand, M.Micoulaut, Physical Review, 62, 9228 (2000). https://doi.org/10.1103/PhysRevB.62.R9228 |
||||
21. J.C.Phillips, Physical Review B, 88, 216401 (2002). https://doi.org/10.1103/PhysRevLett.88.216401 |
||||
22. M.Micoulaut, J.C.Phillips, Physical Review, 67, 104204 (2003). https://doi.org/10.1103/PhysRevB.67.104204 |
||||
23. L.Tichy, H.Ticha, Mater. Lett., 21, 313 (1994). https://doi.org/10.1016/0167-577X(94)90196-1 |
||||
24. A.I.Isayev, H.I.Mammadova, S.I.Mekhtieva, R.I.Alekberov, FTP, 54, 1052 (2020). https://doi.org/10.1134/S1063782620100140 |
||||
25. R.A.Street, N.F.Mott, Phys. Rev. Lett., 35, 1293 (1975). https://doi.org/10.1103/PhysRevLett.35.1293 |
||||
26. P.W.Anderson, Phys. Rev. Lett., 34, 953 (1975). https://doi.org/10.1103/PhysRevLett.34.953 |
||||
27. M.Kastner, D.Adler, H.Fritzsche, Phys. Rev. Lett., 37, 1504 (1976). https://doi.org/10.1103/PhysRevLett.37.1504 |
||||
28. A.V.Kolobov, J.Tominaga, Chalcogenides, Springer-Verlag Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-28705-3 |
||||
29. N.A.Bogoslovsky, K.D.Tsendin, FTP, 43, 1378 (2009). https://doi.org/10.1134/S1063782609100145 |
||||
30. V.N.Abakumov, I.A.Merkulov, V.I.Perel, I.N.Yassievich, JETF, 89, 1472 (1985). | ||||
31. V.Karpus, V.I.Perel, JETF, 42, 403 (1985). https://doi.org/10.1016/S0092-8674(85)80137-9 |
||||
32. V.Karpus, V.I.Perel, JETF, 91, 2319 (1986). | ||||
33. V.N.Abakumov, V.Karpus, V.I.Perel, I.N.Yassievich, FTP, 22, 262 (1988). | ||||
34. L.P.Kazakova, E.A.Lebedev, N.B.Zakharova et al., J. of Non-Crystalline Solids, 167, 65 (1994). https://doi.org/10.1016/0022-3093(94)90367-0 |
||||
35. R.I.Alekberov, A.I.Isayev, S.I.Mekhtiyeva, M.Fabian, Physica B: Condensed Matter, 550, 367 (2018). https://doi.org/10.1016/j.physb.2018.09.031 |
||||
35. R.I.Alekberov, S.I.Mekhtiyeva, A.I.Isayev, M.Fabian, J. Non-Crystalline Solids, 470, 152 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.015 |
||||
35. J.Frenkel, Physical Review, 54, 647 (1938). https://doi.org/10.1103/PhysRev.54.647 |
||||
35. W.R.Harrell, Poole-Frenkel Conduction in Silicon Dioxide Films, and Implications for Hot-Carrier Degradation in n-MOS Devices, Doctoral Dissertation, University of Maryland (1994). |