Funct. Mater. 2023; 30 (1): 43-48.


Use of materials based on cobalt alloys for the eco- and energy technologies

T.A.Nenastina1, M.D.Sakhnenko2, V.O.Proskurina2

1Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo St., 61002 Kharkov, Ukraine
2National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., 61002 Kharkiv, Ukraine


The possibility of electrosynthesis and control of the surface morphology and composition of electrolytic coatings from alloys of cobalt and refractory metals by varying the electrolysis parameters has been proved. It was established that the composition of the coating, along with the main components, includes oxygen and carbon, and such systems can be considered as composite materials. The coatings deposited using the pulsed current can be considered as composite materials, and their oxide phase is formed directly in the electrode process as an intermediate product of incomplete reduction of tungstates, molybdates and the hydrolysis of zirconium salts. Studies of the surface morphology and topology of the composite coatings and their quantitative and phase compositions indicate the possibility of photocatalytic activity of Co-MoOx-WOx, Co-MoOx-ZrO2 and Co-WOv-ZrO2 coatings. A study of the photodegradation of azo dye methyl-orange (MO) showed that the efficiency of the removing MO from the solution was 34 %, 25 % and 14 % for 50 minutes of UV irradiation in the presence of Co-MoOx-WOx, Co-MoOx-ZrO2 and Co-WOv-ZrO2 coatings. The higher photoactivity of the composite Co-MoOx-WOx coatings can be explained by the presence of non-stoichiometric oxides of molybdenum and tungsten.

composite coatings, electrochemical deposition, cobalt, refractory metals, photocatalytic properties.
1. Shasha Zhu, Dunwei Wang, Adv. Energy. Mater., 23, 1 (2017). doi/10.1002/aenm.201700841.
2. L.Candish, K.D.Collins, G.C.Cook et al., Chem. Rev., 122, 2907 (2022).
3. H.Tong, S.Ouyang, Y.Bi, N.Umezawa, Adv. Mater., 24, 229 (2012).
4. D.F.Ollis, H.Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Amsterdam, Elsevier (1993).
5. N.M.Soboleva, A.A.Nosonovich, V.V.Goncharuk, Chem. Tech. Water, 29, 125 (2007).
6. V.M.Zunullina, V.P.Zhukov, V.N.Krasilnikov, M.Yu.Janchenko, Phys. Sol. Cell, 52, 253 (2010).
7. A.Fahmi, Ch.Minot, B.Silvi, M.Causa, Phys. Rev. B, 47, 11717 (1993).
8. T.L.Thompson, J.T.Yates, Chem. Rev., 106, 4428 (2006).
9. M.Kaneko, I.Okura, Photocatalysis. Science and Technology, New York, Springer (2002).
10. G.Yar-Mukhamedova, M.Ved', N.Sakhnenko, T.Nenastina, Appl. Surf. Sci., 445, 298 (2018).
11. M.Ved, N.Sakhnenko, T.Bairachnaya, N.Tkachenko, Func. Mater., 15, 613 (2008).
12. M.V.Ved', N.D.Sakhnenko, I.Yu.Yermolenko, T.A.Nenastina, Nanochemistry, Biotechnology, Nanomaterials, and Their Applications, 214, 3 (2019).
13. G.Yar-Mukhamedova, N.Sakhnenko, M.Ved' et al., IOP Conf. Ser.:Mater. Sci. Eng., 213, 30 (2017).
14. B.Kim, D.Kim, D.Cho, S.Cho, Chemosphere, 52, 277 (2003).
15. N.Sakhnenko, M.Ved, V.Bykanova, K.Nikiforow, Open Chem., 13, 614 (2015).
16. G.V.Karakurchi, M.V.Ved', I.Yu.Yermolenko, M.D.Sakhnenko, Electrolytic Coatings of Iron Alloys to Strengthen and Protect the Surface, Panov AM, Kharkiv (2017).
17. T.O.Nenastina, M.D.Sakhnenko, V.O.Proskurina, J. Chem. and Tech., 2, 333 (2022).
18. T.Salim, Z.Yin, S.Sun et al., Acs Appl. Mater. & Interfaces, 4, 1063 (1998).
19. A.Hangfeldt, M.Gratzel, Chem. Rev., 95, 49 (1995).
20. X.Yang, D.Wang, Appl. Energy Mater., 1, 6657 (2018).
21. N.Cirovic, P.Spasojevic, L.Ribic-Zelenovic, Science of Sintering, 47, 347 (2015).
22. E.Garcia-Ramirez, M.Mondragon-Chaparro, O.Zelaya-Angel, Appl. Phys. A, 108, 291 (2012).

Current number: