Funct. Mater. 2023; 30 (1): 65-73.
Comparing of the characteristics of thermal spray coating technologies: air-fuel detonation aluminum spraying onto steel with other technologies
1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine 2National University of Civil Defence of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine
In this paper, on the basis of data obtained for the deposition of aluminum on steel, the characteristics of the air-fuel detonation technology used for thermal spraying are compared with similar technologies. The measurement data show that the pressure of the detonation products in the airfuel detonation technology reaches 1.68 MPa. The temperature of detonation products varies in the range of 1845 to 2200 K. The comparison was made on coating parameters such as porosity, adhesion, surface roughness and cost. It has been established that the developed air-fuel detonation technology has certain advantages related to porosity and productivity. However, this technological process requires certain improvement to increase adhesion and decrease roughness.
1. A.Hasui, O.Morigaki, Naplavka i Napylenie, Mashinostroenie, Moscow (1979) [in Russian]. | ||||
2. V.Shatt, Poroshkovaja Metallurgija. Spechennye i Kompozicionnye Materialy, Metallurgija, Moscow (1983) [in Russian]. | ||||
3. V.N.Antsiferov, G.V.Bobrov, L.K.Druzhinin et al., Poroshkovaya Metallurgiya i Napylennye Pokrytiya, Metallurgija, Moscow (1987) [in Russian]. | ||||
4. A.J.Panas, C.Senderowski, B.Fikus, Thermochim Acta, 676 (2019). https://doi.org/10.1016/j.tca.2019.04.009 |
||||
5. C.Senderowski, A.J.Panas, B.Fikus et al., Materials, 14, 23 (2021). https://doi.org/10.3390/ma14237443 |
||||
6. V.S.Panov, A.M.Chuvilin, V.A.Fal'kovskij, Tehnologija i Svojstva Spechennyh Tverdyh Splavov i Izdelij iz Nih, MISIS, Moscow (2004) [in Russian]. | ||||
7. S.S.Bartenev, Ju.P.Fed'ko, A.I.Grigor'ev, Detonacionnye Pokrytija v Mashinostroenii, Mashinostroenie, Leningrad (1982) [in Russian]. | ||||
8. P.A.Vitjaz', B.C.Ivashko, Z.D.Manojlo et al., Teorija i Praktika Gazoplamennogo Napylenija, Navuka i tjehnisa, Minsk (1993) [in Belarus]. | ||||
9. Ju.A.Harlamov, M.H.Shorshorov, V.V.Kudinov et al., Primenenie Detonatsii v Gazakh dlya Naneseniya Pokrytiy, Fizika Goreniya i Vzryva, SO AN SSSR, Moscow (1959) [in Russian]. | ||||
10. V.V.Kudinov, G.V.Bobrov, Nanesenie Pokrytij Napyleniem. Teorija, Tehnologija i Oborudovanie, Metallurgija, Moscow (1983) [in Russian]. | ||||
11. A.Y.Kulik, Y.S.Borisov, A.S.Mnukhin et al., Gazotermicheskoe Napylenie Kompozitsionnykh Poroshkov. Gas-Thermal Deposition of Composite Powders, Mashinostroenie, Leningrad (1985) [in Russian]. | ||||
12. Ju.S.Borisov, Ju.A.Harlamov, S.L.Sidorenko et al., Gazotermicheskie Pokrytija iz Poroshkovyh Materialov, Naukova Dumka, Kyiv [Ukraine]. | ||||
13. S.Shrestha, A.Sturgeon, EUROCORR, 2005 (2005). | ||||
14. https://www.metallisation.com/product-category/flame-spray/. | ||||
15. https://www.metallisation.com/product-category/arc-spray/. | ||||
16. R.Grinon-Echaniz, P.Refait, M.Jeannin et al., Corros SCI, 187 (2021). https://doi.org/10.1016/j.corsci.2021.109514 |
||||
17. R.G.Echaniz, S.Paul, R.Thornton, Mater. Corros., 70, 6 (2019). https://doi.org/10.1002/maco.201810764 |
||||
18. https://www.metallisation.com/products/arcspray-528e-icc-high-throughput/. | ||||
19. A.Castro-Vargas, S.Gill, S.Paul, Surfaces, 5 (2022). https://doi.org/10.3390/surfaces5010005 |
||||
20. B.Syrek-Gerstenkorn, S.Paul, A.J.Davenport, Coatings, 10, 267 (2020). https://doi.org/10.3390/coatings10030267 |
||||
21. M.H.AbdMalek, N.H.Saad, S.K.Abas et al., IOP Conf. Ser-Mat. Sci, 46, 1 (2013). https://doi.org/10.1088/1757-899X/46/1/012028 |
||||
22. K.V.Korytchenko, O.Y.Hichlo, I.O.Belousov et al., AIP Conf. Proc., 27, 1 (2020). https://doi.org/10.15407/fm27.01.224 |
||||
23. Korytchenko, R.Tomashevskiy, I.Varshamova et al., KhPIWeek, (2020). https://doi.org/10.1109/KhPIWeek51551.2020.9250172 |
||||
24. K.Korytchenko, D.Samoilenko, D. Dubinin et al., Mater. Sci. Forum, 1038 (2021). https://doi.org/10.4028/www.scientific.net/MSF.1038.500 |
||||
25. K.Korytchenko, P.Krivosheyev, D.Dubinin et al., EEJET, 4, 5/100 (2021). https://doi.org/10.15587/1729-4061.2019.175333 |
||||
26. K.Korytchenko, R.S.Tomashevskyi, I.Varshamova et al., Probl. Atom. Sci. Tech., 4, 122 (2019). https://doi.org/10.46813/2019-122-116 |
||||
27. K.V.Korytchenko, A.M.Kasimov, V.I.Golota et al., Probl. Atom. Sci. Tech., 6, 118 (2018). | ||||
28. K.V.Korytchenko, I.S.Varshamova, D.V.Meshkov et al., Probl. Atom. Sci. Tech., 1, 131 (2021). \ https://doi.org/10.46813/2021-131-092 |
||||
29. D.Dubinin, K.Korytchenko A.Lisnyak et al., EEJET, 2, 10/92 (2018). https://doi.org/10.15587/1729-4061.2018.127865 |
||||
30. P.Srihari, G.Sai Prasad, B.V.N.Charyulu et al., Intern. Journal of Recent Advances in Mechanical Engineering, 3 (2014). |
||||
31. D.Rybin, V.Yu.Ul'yanitskii, I.S.Batraev, Combust. Explo Shock, 56, 3 (2020). https://doi.org/10.1134/S0010508220030120 |
||||
32. M.Mitu, V.Brinzea, A.Musuc et al., U.P.B. Sci. Bull., Series B, 73, 3 (2011). | ||||
33. V.I.Tarzhanov, I.V.Telichko, V.G.Vil'danov et al., Combust Explo Shock, 42 (2006). https://doi.org/10.1007/s10573-006-0060-4 |
||||
34. F.A.Baum, K.P.Stanjukovich, B.I.Shehter, Fizika Vzryva, Izd-vo Fiziko-matematicheskoj Literatury, Moscow (1959) [in Russian]. | ||||
35. N.Bheekhun, A.B.D.R.binAbuTalib, H.Hasini et al., Appl. Mech. Mater., 564 (2014). https://doi.org/10.4028/www.scientific.net/AMM.564.240 |
||||
36. GOST 5494-95 Pudra Aljuminijeva. Tehnichni Umovy. | ||||
37. DSTU 2491-94 Pokryttja Metalevi ta Nemetalevi Neorganichni. Terminy ta Vyznachennja. |