Funct. Mater. 2023; 30 (1): 65-73.

doi:https://doi.org/10.15407/fm30.01.65

Comparing of the characteristics of thermal spray coating technologies: air-fuel detonation aluminum spraying onto steel with other technologies

K.V.Korytchenko1, V.Yu.Kucherskyi1, R.Y.Krasnoshapka1, D.P.Dubinin2, S.M.Shevchenko2, R.I.Kovalenko2

1National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine 2National University of Civil Defence of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine

Abstract: 

In this paper, on the basis of data obtained for the deposition of aluminum on steel, the characteristics of the air-fuel detonation technology used for thermal spraying are compared with similar technologies. The measurement data show that the pressure of the detonation products in the airfuel detonation technology reaches 1.68 MPa. The temperature of detonation products varies in the range of 1845 to 2200 K. The comparison was made on coating parameters such as porosity, adhesion, surface roughness and cost. It has been established that the developed air-fuel detonation technology has certain advantages related to porosity and productivity. However, this technological process requires certain improvement to increase adhesion and decrease roughness.

Keywords: 
gas-detonation spraying, air-fuel technology, spraying aluminum onto steel.
References: 
1. A.Hasui, O.Morigaki, Naplavka i Napylenie, Mashinostroenie, Moscow (1979) [in Russian].
 
2. V.Shatt, Poroshkovaja Metallurgija. Spechennye i Kompozicionnye Materialy, Metallurgija, Moscow (1983) [in Russian].
 
3. V.N.Antsiferov, G.V.Bobrov, L.K.Druzhinin et al., Poroshkovaya Metallurgiya i Napylennye Pokrytiya, Metallurgija, Moscow (1987) [in Russian].
 
4. A.J.Panas, C.Senderowski, B.Fikus, Thermochim Acta, 676 (2019). 
https://doi.org/10.1016/j.tca.2019.04.009
 
5. C.Senderowski, A.J.Panas, B.Fikus et al., Materials, 14, 23 (2021). 
https://doi.org/10.3390/ma14237443
 
6. V.S.Panov, A.M.Chuvilin, V.A.Fal'kovskij, Tehnologija i Svojstva Spechennyh Tverdyh Splavov i Izdelij iz Nih, MISIS, Moscow (2004) [in Russian].
 
7. S.S.Bartenev, Ju.P.Fed'ko, A.I.Grigor'ev, Detonacionnye Pokrytija v Mashinostroenii, Mashinostroenie, Leningrad (1982) [in Russian].
 
8. P.A.Vitjaz', B.C.Ivashko, Z.D.Manojlo et al., Teorija i Praktika Gazoplamennogo Napylenija, Navuka i tjehnisa, Minsk (1993) [in Belarus].
 
9. Ju.A.Harlamov, M.H.Shorshorov, V.V.Kudinov et al., Primenenie Detonatsii v Gazakh dlya Naneseniya Pokrytiy, Fizika Goreniya i Vzryva, SO AN SSSR, Moscow (1959) [in Russian].
 
10. V.V.Kudinov, G.V.Bobrov, Nanesenie Pokrytij Napyleniem. Teorija, Tehnologija i Oborudovanie, Metallurgija, Moscow (1983) [in Russian].
 
11. A.Y.Kulik, Y.S.Borisov, A.S.Mnukhin et al., Gazotermicheskoe Napylenie Kompozitsionnykh Poroshkov. Gas-Thermal Deposition of Composite Powders, Mashinostroenie, Leningrad (1985) [in Russian].
 
12. Ju.S.Borisov, Ju.A.Harlamov, S.L.Sidorenko et al., Gazotermicheskie Pokrytija iz Poroshkovyh Materialov, Naukova Dumka, Kyiv [Ukraine].
 
13. S.Shrestha, A.Sturgeon, EUROCORR, 2005 (2005).
 
14. https://www.metallisation.com/product-category/flame-spray/.
 
15. https://www.metallisation.com/product-category/arc-spray/.
 
16. R.Grinon-Echaniz, P.Refait, M.Jeannin et al., Corros SCI, 187 (2021). 
https://doi.org/10.1016/j.corsci.2021.109514
 
17. R.G.Echaniz, S.Paul, R.Thornton, Mater. Corros., 70, 6 (2019). 
https://doi.org/10.1002/maco.201810764
 
18. https://www.metallisation.com/products/arcspray-528e-icc-high-throughput/.
 
19. A.Castro-Vargas, S.Gill, S.Paul, Surfaces, 5 (2022). 
https://doi.org/10.3390/surfaces5010005
 
20. B.Syrek-Gerstenkorn, S.Paul, A.J.Davenport, Coatings, 10, 267 (2020). 
https://doi.org/10.3390/coatings10030267
 
21. M.H.AbdMalek, N.H.Saad, S.K.Abas et al., IOP Conf. Ser-Mat. Sci, 46, 1 (2013). 
https://doi.org/10.1088/1757-899X/46/1/012028
 
22. K.V.Korytchenko, O.Y.Hichlo, I.O.Belousov et al., AIP Conf. Proc., 27, 1 (2020). 
https://doi.org/10.15407/fm27.01.224
 
23. Korytchenko, R.Tomashevskiy, I.Varshamova et al., KhPIWeek, (2020). 
https://doi.org/10.1109/KhPIWeek51551.2020.9250172
 
24. K.Korytchenko, D.Samoilenko, D. Dubinin et al., Mater. Sci. Forum, 1038 (2021). 
https://doi.org/10.4028/www.scientific.net/MSF.1038.500
 
25. K.Korytchenko, P.Krivosheyev, D.Dubinin et al., EEJET, 4, 5/100 (2021). 
https://doi.org/10.15587/1729-4061.2019.175333
 
26. K.Korytchenko, R.S.Tomashevskyi, I.Varshamova et al., Probl. Atom. Sci. Tech., 4, 122 (2019). 
https://doi.org/10.46813/2019-122-116
 
27. K.V.Korytchenko, A.M.Kasimov, V.I.Golota et al., Probl. Atom. Sci. Tech., 6, 118 (2018).
 
28. K.V.Korytchenko, I.S.Varshamova, D.V.Meshkov et al., Probl. Atom. Sci. Tech., 1, 131 (2021). \
https://doi.org/10.46813/2021-131-092
 
29. D.Dubinin, K.Korytchenko A.Lisnyak et al., EEJET, 2, 10/92 (2018). 
https://doi.org/10.15587/1729-4061.2018.127865
 

30. P.Srihari, G.Sai Prasad, B.V.N.Charyulu et al., Intern. Journal of Recent Advances in Mechanical Engineering, 3 (2014). 
https://doi.org/10.14810/ ijmech.2014.3303.

 
31. D.Rybin, V.Yu.Ul'yanitskii, I.S.Batraev, Combust. Explo Shock, 56, 3 (2020). 
https://doi.org/10.1134/S0010508220030120
 
32. M.Mitu, V.Brinzea, A.Musuc et al., U.P.B. Sci. Bull., Series B, 73, 3 (2011).
 
33. V.I.Tarzhanov, I.V.Telichko, V.G.Vil'danov et al., Combust Explo Shock, 42 (2006). 
https://doi.org/10.1007/s10573-006-0060-4
 
34. F.A.Baum, K.P.Stanjukovich, B.I.Shehter, Fizika Vzryva, Izd-vo Fiziko-matematicheskoj Literatury, Moscow (1959) [in Russian].
 
35. N.Bheekhun, A.B.D.R.binAbuTalib, H.Hasini et al., Appl. Mech. Mater., 564 (2014). 
https://doi.org/10.4028/www.scientific.net/AMM.564.240
 
36. GOST 5494-95 Pudra Aljuminijeva. Tehnichni Umovy.
 
37. DSTU 2491-94 Pokryttja Metalevi ta Nemetalevi Neorganichni. Terminy ta Vyznachennja.

Current number: