Funct. Mater. 2023; 30 (2): 178-186.

doi:https://doi.org/10.15407/fm30.02.178

Investigation of the effect of processing parameters on the spectroscopic properties of ZnSe NCs for hot-pressed ceramics of the Cleartran and Multispectral classes

Ye.G.Plakhtii1, D.B.Hlushkova2, V.M.Volchuk1, V.V.Slavnyi3, S.V.Demchenko2, V.A.Saenko2

1Prydniprovska State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., 49000 Dnipro, Ukraine
2Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
3Oles Honchar Dnipro National University, 72 Gagarin Ave., 49010 Dnipro, Ukraine

Abstract: 

ZnSe nanocrystals were synthesized by the combustion synthesis method (self-propagating high temperature synthesis) with different initial current pulses. Annealing was carried out in the temperature range T = 200÷800°C with a step of T = 100°C at atmospheric pressure, in air or in nitrogen. The results of electron micrographs, EPR, XRD analysis and photoluminescence depending on the annealing temperature in air or nitrogen are presented. The dependences of the resonance value of the EPR magnetic field of Mn2+ ions, the hyperfine structure constant A of the EPR spectrum of Mn2+ ions, the location of the maximum and the half-width of the integral photoluminescence spectrum on the annealing temperature in air or in nitrogen were obtained. After annealing the nanocrystal size increases by ~ 20 %, the fraction of the cubic phase and the lattice parameter of nanocrystals increase, and both the number of dislocations and microstresses decrease compared to the initial charge. For the synthesis of ZnSe nanocrystals with a more perfect structure, it is recommended to use a current pulse of ~ 40 A followed by annealing at T = 800°C in nitrogen. The obtained results make it possible to use the ZnSe nanocrystals synthesized by the combustion method for various optoelectronic devices or for producing hot-pressed ceramics of the Cleartran or Multispectral classes.

Keywords: 
ZnSe nanocrystals, combustion synthesis method, annealing, EPR, Multispectral classes.
References: 

1. V.S.Vahrusheva, D.B.Hlushkova, V.M.Volchuk et al., Problems of Atomic Science and Technology, 140, 137 (2022).
https://doi.org/10.46813/2022-140-137

2. P.H.Binh, N.T.Hung, IEEE Photonics Technology Letters, 28, 18 (2016).
https://doi.org/10.1109/LPT.2016.2578964

3. Qi Zhang, Huiqiao Li, Ying Ma et al., Progress in Materials Science, 83 (2016).
https://doi.org/10.1016/j.pmatsci.2016.07.005

4. S.Jagtap, P.Chopade, S.Tadepalli et al., Opto-Electronics Review, 27, 1 (2019).
https://doi.org/10.1016/j.opelre.2019.01.001

5. S.Galkin, I.Rybalka, L.Sidelnikova et al., Journal of Luminescence, 239 (2021).
https://doi.org/10.1016/j.jlumin.2021.118360

6. X.Ropagnol, R.Morandotti, T.Ozaki et al., IEEE Photonics Journal, 3, 2 (2011).
https://doi.org/10.1109/JPHOT.2011.2116112

7. I.Dmitruk, N.Berezovska, V.Degoda et al., Journal of Nanomaterials, 2021 (2021).
https://doi.org/10.1155/2021/6683040

8. U.Choudhari, S.Jagtap, Journal of Electronic Materials, 49 (2020).
https://doi.org/10.1007/s11664-020-08320-6

9. A.O.Sofiienko, V.Y.Degoda, Radiation Measurements, 47, 1 (2012).
https://doi.org/10.1016/j.radmeas.2011.08.017

10. V.K.Nguyen, D.K.Pham, N.Q.Tran et al., Green Processing and Synthesis, 11, 1 (2022).
https://doi.org/10.1515/gps-2022-0001

11. M.H.Abib, X.Yao, G.Li et al., Nano, 11, 08 (2016).
https://doi.org/10.1142/S1793292016500867

12. B.Feng, J.Cao, D.Han et al., Materials Science in Semiconductor Processing, 27 (2014).
https://doi.org/10.1016/j.mssp.2014.08.027

13. A.Chauhan, A.Sudhaik, P.Raizada et al., Process Safety and Environmental Protection, 170 (2023).
https://doi.org/10.1016/j.psep.2022.12.017

14. C.Sun, Y.Gu, W.Wen et al., Optical Materials, 81 (2018).
https://doi.org/10.1016/j.optmat.2018.05.005

15. M.Chinnasamy, R.Rathanasamy, S.Sivaraj et al., Journal of Electronic Materials, 51, 6 (2022).
https://doi.org/10.1007/s11664-022-09554-2

16. D.Li, N.Wei, J.Yang et al., Optical Materials, 132 (2022).

17. J.K.Zhang, J.M.Shi, D.P.Zhao et al., Optical Engineering, 56, 7 (2017).
https://doi.org/10.1117/1.OE.56.7.077110

18. X.Peng, F.Ai, L.Yan et al., Cell Reports Physical Science, 2, 5 (2021).
https://doi.org/10.1016/j.xcrp.2021.100436

19. S.Dehghani, N.K.Nasab, M.Darroudi, Nanomedicine Journal, 9, 1 (2022).

20. A.Pawlis, G.Mussler, C.Krause et al., ACS Applied Electronic Materials, 1, 1 (2018).
https://doi.org/10.1021/acsabm.8b00277

21. M.Godlewski, E.Guziewicz, K.Kopalko et al., Journal of Luminescence, 102 (2003).
https://doi.org/10.1016/S0022-2313(02)00597-5

22. S.R.Vangala, D.Brinegar, V.L.Tassev et al., Journal of Crystal Growth, 522 (2019).
https://doi.org/10.1016/j.jcrysgro.2019.06.032

23. E.A.Mironov, O.V.Palashov, S.S.Balabanov, Optics Letters, 46, 9 (2021).
https://doi.org/10.1364/OL.408437

24. H.Sirringhaus, N.Tessler, R.H.Friend, Science, 280, 5370 (1998).
https://doi.org/10.1126/science.280.5370.1741

25. T.Rakshit, S.Mandal, P.Mishra et al., Journal of Nanoscience and Nanotechnology, 12 (2012).
https://doi.org/10.1166/jnn.2012.5134

26. A.J.Varkey, A.F.Fort, Solar Energy Materials and Solar Cells, 29, 3 (1993).
https://doi.org/10.1016/0927-0248(93)90040-A

27. H.-C.Chiu, C.-S.Yeh, The Journal of Physical Chemistry C, 111, 20 (2007).
https://doi.org/10.1021/jp0688355

28. E.A.Levashov, A.S.Mukasyan, A.S.Rogachev et al., International Materials Reviews, 62, 4 (2017).
https://doi.org/10.1080/09506608.2016.1243291

29. A.S.Rogachev; A.S.Mukasyan, Combustion for Material Synthesis, CRC Press (2014).
https://doi.org/10.1201/b17842

30. Y.Y.Bacherikov, A.V.Gilchuk, A.G.Zhuk et al., Journal of Luminescence, 194 (2018).
https://doi.org/10.1016/j.jlumin.2017.09.010

31. G.Liu, X.Yuan, J.Li et al., Materials & Design, 97 (2016).
https://doi.org/10.1016/j.matdes.2016.02.063

32. Z.Tian, Z.Chen, X.Yuan et al., Ceramics International, 45, 14 (2019).
https://doi.org/10.1016/j.ceramint.2019.05.321

33. Y.Plakhtii, O.Khmelenko, Physica Scripta, 98, 3 (2023).
https://doi.org/10.1088/1402-4896/acb5ca

34. A.V.Kovalenko, Y.G.Plakhtii, O.V.Khmelenko, Functional Materials, 25, 665 (2018). https://doi.org/10.15407/fm25.04.665

35. I.Borovinskaya, A.Gromov, E.A.Levachov et al., ??? Elsevier (2017).

36. D.S.Mazing, A.V.Nikiforova, A.S.Osinin et al., Applied Magnetic Resonance, 48 (2017).
https://doi.org/10.1007/s00723-017-0898-5

37. X.G.Zhang, I.A.Rodriguez, P.Li et al., Journal of Electronic Materials, 30 (2001).
https://doi.org/10.1007/BF02665853

38. N.E.Korsunska, Y.Y.Bacherikov, T.R.Stara et al., Semiconductors, 47 (2013).
https://doi.org/10.1134/S1063782613050138

39. M.Verma, A.Kaswan, D.Patidar et al., Journal of Materials Science: Materials in Electronics, 27 (2016).
https://doi.org/10.1007/s10854-016-4912-8

40. V.I.Voronin, I.F.Berger, N.V.Proskurnina et al., The Physics of Metals and Metallography, 117 (2016).
https://doi.org/10.1134/S0031918X16040141

41. A.V.Kovalenko, Y.G.Plakhtii, O.V.Khmelenko, Journal of Nano- and Electronic Physics, 11, 4 (2019).
https://doi.org/10.21272/jnep.11(4).04031

42. A.V.Kovalenko, S.M.Vovk, Y.G.Plakhtii, Functional Materials, 27, 424 (2020). https://doi.org/10.15407/fm27.02.424

43. A.V.Kovalenko, S.M.Vovk, Y.G.Plakhtii, Ukrainian Journal of Physical Optics, 19, 3 (2018).
https://doi.org/10.3116/16091833/19/3/133/2018

44. G.R.Durand, N.Hakmeh, V.Dorcet et al., Journal of the European Ceramic Society, 39, 10 (2019).
https://doi.org/10.1016/j.jeurceramsoc.2019.03.033

45. D.C.Harris, Window and Dome Technologies and Materials, 6545 (2007).

46. D.C.Harris, M.Baronowski, L.Henneman et al., Optical Engineering, 47, 11 (2008).
https://doi.org/10.1117/1.3006123

47. C.Chlique, G.Delaizir, O.Merdrignac-Conanec, Opt. Mater., 33 (2011).
https://doi.org/10.1016/j.optmat.2010.10.008

48. N.E.Kalinina, D.B.Glushkova, A.I.Voronkov et al., Functional Materials, 26, 514 (2019). https://doi.org/10.15407/fm26.03.514

49. D.B.Hlushkova, V.A.Bagrov, S.V.Demchenko et al., Problems of Atomic Science and Technology, 140, 125 (2022).
https://doi.org/10.46813/2022-140-125

50. D.B.Hlushkova, V.A.Bagrov, V.M.Volchuk et al., Functional Materials, 30, 74 (2023). https://doi.org/10.15407/fm30.01.74

51. D.Klets, I.V.Gritsuk, A.Makovetskyi et al., SAE Technical Papers, 2018-01-0015 (2018). https://saemobilus.sae.org/content/2018-01-0015/

52. M.Podrigalo, A.Turenko, V.Bogomolov et al., SAE Technical Papers, 2018-01-1880 (2018). https://saemobilus.sae.org/content/2018-01-1880/

53. M.Mikhalevich, A.Yarita, A.Turenko et al., SAE Technical Papers, 2018-01-1295 (2018). https://saemobilus.sae.org/content/2018-01-1295/

Current number: